scholarly journals Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces

2013 ◽  
Vol 110 (39) ◽  
pp. 15585-15590 ◽  
Author(s):  
X. Yan ◽  
S. Li ◽  
J. B. Pollock ◽  
T. R. Cook ◽  
J. Chen ◽  
...  
2018 ◽  
Vol 140 (6) ◽  
pp. 2041-2045 ◽  
Author(s):  
Fabiola Zapata ◽  
Lidia González ◽  
Antonio Caballero ◽  
Adolfo Bastida ◽  
Delia Bautista ◽  
...  

2012 ◽  
Vol 22 (12) ◽  
pp. 2572-2579 ◽  
Author(s):  
Arri Priimagi ◽  
Gabriella Cavallo ◽  
Alessandra Forni ◽  
Mikael Gorynsztejn-Leben ◽  
Matti Kaivola ◽  
...  

2019 ◽  
Vol 97 (3) ◽  
pp. 238-243 ◽  
Author(s):  
Mahmood A. Fard ◽  
Ava Behnia ◽  
Richard J. Puddephatt

The platinum(II) complexes [PtCl(SMe2)(κ2-N,N′-L)]Cl and [PtMe(SMe2)(κ2-N,N′-L)]Cl, L = 2-C5H4NCH2NH-x-C6H4OH (x = 2, 3, or 4), have been prepared and structurally characterized. In all cases, the complexes form supramolecular polymers in the solid state by NH··Cl and OH··Cl hydrogen bonding to the chloride anion. The ligands are chiral at the amine nitrogen atom, and in all cases, the polymers are isotactic, formed by self-recognition or narcissistic self-assembly. The structures in the crystalline state all have the Me2S ligand trans to pyridyl, but in solution, the methylplatinum(II) complexes isomerise slowly to give an equilibrium with the isomers having the methyl group trans to the pyridyl donor.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4097
Author(s):  
Wooyong Seong ◽  
Hyungwoo Hahm ◽  
Seyong Kim ◽  
Jongwoo Park ◽  
Khalil A. Abboud ◽  
...  

Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times higher than that of a μ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the self-assembly of the bis-urea salen metal complex through hydrogen bonding.


Author(s):  
Gourab Das ◽  
Sandeep Cherumukkil ◽  
Akhil Padmakumar ◽  
Vijay B. Banakar ◽  
Vakayil K. Praveen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4705
Author(s):  
Boer Liu ◽  
Xi Chen ◽  
Glenn A. Spiering ◽  
Robert B. Moore ◽  
Timothy E. Long

This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths.


2021 ◽  
Author(s):  
Gourab Das ◽  
Sandeep Cherumukkil ◽  
Akhil Padmakumar ◽  
Vijay B. Banakar ◽  
Vakayil K. Praveen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document