Tweaking a BODIPY Spherical Self‐Assembly to 2D Supramolecular Polymers Facilitates Excited State Cascade Energy Transfer

2021 ◽  
Author(s):  
Gourab Das ◽  
Sandeep Cherumukkil ◽  
Akhil Padmakumar ◽  
Vijay B. Banakar ◽  
Vakayil K. Praveen ◽  
...  
Author(s):  
Gourab Das ◽  
Sandeep Cherumukkil ◽  
Akhil Padmakumar ◽  
Vijay B. Banakar ◽  
Vakayil K. Praveen ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (88) ◽  
pp. 72416-72422 ◽  
Author(s):  
Challa V. Kumar ◽  
Marc J. Novak ◽  
Kyle R. Benson ◽  
Clive Baveghems ◽  
Vindya K. Thilakarathne ◽  
...  

Artificial antenna complexes built via self-assembly are reported, indicating efficient cascade energy transfer, unprecedented thermal stability, and ease of formation.


2021 ◽  
Author(s):  
Xinxian Ma ◽  
Jinlong Yue ◽  
Bo Qiao ◽  
LIli Zhou ◽  
Yang Gao ◽  
...  

Supramolecular fluorescent materials have attracted considerable attention in recent years since they endow specific and unique properties to materials. Nevertheless, the utilization of photo-responsive characteristics to modulate their fluorescence emission...


2021 ◽  
Vol 57 (15) ◽  
pp. 1927-1930
Author(s):  
Zhao Gao ◽  
Lulu Shi ◽  
Xiao Ling ◽  
Ze Chen ◽  
Qingsong Mei ◽  
...  

A hybrid supramolecular system with near-infrared photon-excited energy transfer has been successfully constructed, relying on the assistance of upconversion nanoparticles in platinum(ii)-based supramolecular polymers.


2012 ◽  
Vol 48 (56) ◽  
pp. 7067 ◽  
Author(s):  
Qian Zhang ◽  
Lipeng He ◽  
Hui Wang ◽  
Cheng Zhang ◽  
Weisheng Liu ◽  
...  

2003 ◽  
Vol 42 (21) ◽  
pp. 6629-6647 ◽  
Author(s):  
Lianhe Yu ◽  
Kannan Muthukumaran ◽  
Igor V. Sazanovich ◽  
Christine Kirmaier ◽  
Eve Hindin ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oleksandr Shyshov ◽  
Shyamkumar Vadakket Haridas ◽  
Luca Pesce ◽  
Haoyuan Qi ◽  
Andrea Gardin ◽  
...  

AbstractThe development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.


Sign in / Sign up

Export Citation Format

Share Document