scholarly journals Protein folding guides disulfide bond formation

2015 ◽  
Vol 112 (36) ◽  
pp. 11241-11246 ◽  
Author(s):  
Meng Qin ◽  
Wei Wang ◽  
D. Thirumalai

The Anfinsen principle that the protein sequence uniquely determines its structure is based on experiments on oxidative refolding of a protein with disulfide bonds. The problem of how protein folding drives disulfide bond formation is poorly understood. Here, we have solved this long-standing problem by creating a general method for implementing the chemistry of disulfide bond formation and rupture in coarse-grained molecular simulations. As a case study, we investigate the oxidative folding of bovine pancreatic trypsin inhibitor (BPTI). After confirming the experimental findings that the multiple routes to the folded state contain a network of states dominated by native disulfides, we show that the entropically unfavorable native single disulfide [14–38] between Cys14 and Cys38 forms only after polypeptide chain collapse and complete structuring of the central core of the protein containing an antiparallel β-sheet. Subsequent assembly, resulting in native two-disulfide bonds and the folded state, involves substantial unfolding of the protein and transient population of nonnative structures. The rate of [14–38] formation increases as the β-sheet stability increases. The flux to the native state, through a network of kinetically connected native-like intermediates, changes dramatically by altering the redox conditions. Disulfide bond formation between Cys residues not present in the native state are relevant only on the time scale of collapse of BPTI. The finding that formation of specific collapsed native-like structures guides efficient folding is applicable to a broad class of single-domain proteins, including enzyme-catalyzed disulfide proteins.

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 171
Author(s):  
Jiahui Fu ◽  
Jihui Gao ◽  
Zhongxin Liang ◽  
Dong Yang

Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to ensure their performance of normal biological functions. Moreover, biological molecular assembly, such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to the formation of pathological protein aggregations that cause many diseases. On the other hand, glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is important for understanding not only protein folding and associated diseases, but also the formation of functional biomolecular assembly. This review systematically illustrated the process of human protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten networks.


2013 ◽  
Vol 368 (1617) ◽  
pp. 20110403 ◽  
Author(s):  
Adam M. Benham ◽  
Marcel van Lith ◽  
Roberto Sitia ◽  
Ineke Braakman

The protein folding machinery of the endoplasmic reticulum (ER) ensures that proteins entering the eukaryotic secretory pathway acquire appropriate post-translational modifications and reach a stably folded state. An important component of this protein folding process is the supply of disulfide bonds. These are introduced into client proteins by ER resident oxidoreductases, including ER oxidoreductin 1 (Ero1). Ero1 is usually considered to function in a linear pathway, by ‘donating’ a disulfide bond to protein disulfide isomerase (PDI) and receiving electrons that are passed on to the terminal electron acceptor molecular oxygen. PDI engages with a range of clients as the direct catalyst of disulfide bond formation, isomerization or reduction. In this paper, we will consider the interactions of Ero1 with PDI family proteins and chaperones, highlighting the effect that redox flux has on Ero1 partnerships. In addition, we will discuss whether higher order protein complexes play a role in Ero1 function.


2009 ◽  
Vol 83 (13) ◽  
pp. 6464-6476 ◽  
Author(s):  
Yao-Cheng Ching ◽  
Che-Sheng Chung ◽  
Cheng-Yen Huang ◽  
Yu Hsia ◽  
Yin-Liang Tang ◽  
...  

ABSTRACT Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion.


2010 ◽  
Vol 427 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Richard S. Marshall ◽  
Lorenzo Frigerio ◽  
Lynne M. Roberts

The ER (endoplasmic reticulum) has long been considered the plant cell compartment within which protein disulfide bond formation occurs. Members of the ER-located PDI (protein disulfide isomerase) family are responsible for oxidizing, reducing and isomerizing disulfide bonds, as well as functioning as chaperones to newly synthesized proteins. In the present study we demonstrate that an abundant 7S lectin of the castor oil seed protein storage vacuole, RCA (Ricinus communis agglutinin 1), is folded in the ER as disulfide bonded A–B dimers in both vegetative cells of tobacco leaf and in castor oil seed endosperm, but that these assemble into (A–B)2 disulfide-bonded tetramers only after Golgi-mediated delivery to the storage vacuoles in the producing endosperm tissue. These observations reveal an alternative and novel site conducive for disulfide bond formation in plant cells.


2012 ◽  
Vol 102 ◽  
pp. S185-S186
Author(s):  
M. Koritzinsky ◽  
T. Van den Beucken ◽  
K. Chu ◽  
P.C. Boutros ◽  
I. Braakman ◽  
...  

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Eelco van Anken

AbstractThe endoplasmic reticulum (ER) interacts and cooperates with other organelles as a central hub in cellular homeostasis. In particular, the ER is the first station along the secretory pathway, where client proteins fold and assemble before they travel to their final destination elsewhere in the endomembrane system or outside the cell. Protein folding and disulfide bond formation go hand in hand in the ER, a task that is achieved with the help of ER-resident chaperones and other folding factors, including oxidoreductases that catalyze disulfide bond formation. Yet, when their combined effort is in vain, client proteins that fail to fold are disposed of through ER-associated degradation (ERAD). The ER folding and ERAD machineries can be boosted through the unfolded protein response (UPR) if required. Still, protein folding in the ER may consistently fail when proteins are mutated due to a genetic defect, which, ultimately, can lead to disease. Novel developments in all these fields of study and how new insights ultimately can be exploited for clinical or biotechnological purposes were highlighted in a rich variety of presentations at the ER & Redox Club Meeting that was held in Venice from 15 to 17 April 2015. As such, the meeting provided the participants an excellent opportunity to mingle and discuss key advancements and outstanding questions on ER function in health and disease.


Sign in / Sign up

Export Citation Format

Share Document