scholarly journals Impact of El Niño Southern Oscillation on infectious disease hospitalization risk in the United States

2016 ◽  
Vol 113 (51) ◽  
pp. 14589-14594 ◽  
Author(s):  
David N. Fisman ◽  
Ashleigh R. Tuite ◽  
Kevin A. Brown

Although the global climate is changing at an unprecedented rate, links between weather and infectious disease have received little attention in high income countries. The “El Niño Southern Oscillation” (ENSO) occurs irregularly and is associated with changing temperature and precipitation patterns. We studied the impact of ENSO on infectious diseases in four census regions in the United States. We evaluated infectious diseases requiring hospitalization using the US National Hospital Discharge Survey (1970–2010) and five disease groupings that may undergo epidemiological shifts with changing climate: (i) vector-borne diseases, (ii) pneumonia and influenza, (iii) enteric disease, (iv) zoonotic bacterial disease, and (v) fungal disease. ENSO exposure was based on the Multivariate ENSO Index. Distributed lag models, with adjustment for seasonal oscillation and long-term trends, were used to evaluate the impact of ENSO on disease incidence over lags of up to 12 mo. ENSO was associated more with vector-borne disease [relative risk (RR) 2.96, 95% confidence interval (CI) 1.03–8.48] and less with enteric disease (0.73, 95% CI 0.62–0.87) in the Western region; the increase in vector-borne disease was attributable to increased risk of rickettsioses and tick-borne infectious diseases. By contrast, ENSO was associated with more enteric disease in non-Western regions (RR 1.12, 95% CI 1.02–1.15). The periodic nature of ENSO may make it a useful natural experiment for evaluation of the impact of climatic shifts on infectious disease risk. The impact of ENSO suggests that warmer temperatures and extreme variation in precipitation events influence risks of vector-borne and enteric disease in the United States.

2017 ◽  
Vol 56 (9) ◽  
pp. 2455-2478 ◽  
Author(s):  
Ashton Robinson Cook ◽  
Lance M. Leslie ◽  
David B. Parsons ◽  
Joseph T. Schaefer

AbstractIn recent years, the potential of seasonal outlooks for tornadoes has attracted the attention of researchers. Previous studies on this topic have focused mainly on the influence of global circulation patterns [e.g., El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation, or Pacific decadal oscillation] on spring tornadoes. However, these studies have yielded conflicting results of the roles of these climate drivers on tornado intensity and frequency. The present study seeks to establish linkages between ENSO and tornado outbreaks over the United States during winter and early spring. These linkages are established in two ways: 1) statistically, by relating raw counts of tornadoes in outbreaks (defined as six or more tornadoes in a 24-h period in the United States east of the Rocky Mountains), and their destructive potential, to sea surface temperature anomalies observed in the Niño-3.4 region, and 2) qualitatively, by relating ENSO to shifts in synoptic-scale atmospheric phenomena that contribute to tornado outbreaks. The latter approach is critical for interpreting the statistical relationships, thereby avoiding the deficiencies in a few of the previous studies that did not provide physical explanations relating ENSO to shifts in tornado activity. The results suggest that shifts in tornado occurrence are clearly related to ENSO. In particular, La Niña conditions consistently foster more frequent and intense tornado activity in comparison with El Niño, particularly at higher latitudes. Furthermore, it is found that tornado activity changes are tied not only to the location and intensity of the subtropical jet during individual outbreaks but also to the positions of surface cyclones, low-level jet streams, and instability axes.


2013 ◽  
Vol 14 (1) ◽  
pp. 105-121 ◽  
Author(s):  
R. W. Higgins ◽  
V. E. Kousky

Abstract Changes in observed daily precipitation over the conterminous United States between two 30-yr periods (1950–79 and 1980–2009) are examined using a 60-yr daily precipitation analysis obtained from the Climate Prediction Center (CPC) Unified Raingauge Database. Several simple measures are used to characterize the changes, including mean, frequency, intensity, and return period. Seasonality is accounted for by examining each measure for four nonoverlapping seasons. The possible role of the El Niño–Southern Oscillation (ENSO) cycle as an explanation for differences between the two periods is also examined. There have been more light (1 mm ≤ P < 10 mm), moderate (10 mm ≤ P < 25 mm), and heavy (P ≥ 25 mm) daily precipitation events (P) in many regions of the country during the more recent 30-yr period with some of the largest and most spatially coherent increases over the Great Plains and lower Mississippi Valley during autumn and winter. Some regions, such as portions of the Southeast and the Pacific Northwest, have seen decreases, especially during the winter. Increases in multiday heavy precipitation events have been observed in the more recent period, especially over portions of the Great Plains, Great Lakes, and Northeast. These changes are associated with changes in the mean and frequency of daily precipitation during the more recent 30-yr period. Difference patterns are strongly related to the ENSO cycle and are consistent with the stronger El Niño events during the more recent 30-yr period. Return periods for both heavy and light daily precipitation events during 1950–79 are shorter during 1980–2009 at most locations, with some notable regional exceptions.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 361 ◽  
Author(s):  
Samantha Wisely ◽  
Gregory Glass

Globally, vector-borne diseases are an increasing public health burden; in the United States, tick-borne diseases have tripled in the last three years. The United States Centers for Disease Control and Prevention (CDC) recognizes the need for resilience to the increasing vector-borne disease burden and has called for increased partnerships and sustained networks to identify and respond to the most pressing challenges that face vector-borne disease management, including increased surveillance. To increase applied research, develop communities of practice, and enhance workforce development, the CDC has created five regional Centers of Excellence in Vector-borne Disease. These Centers are a partnership of public health agencies, vector control groups, academic institutions, and industries. This special issue on tick and tick-borne disease surveillance is a collection of research articles on multiple aspects of surveillance from authors that are affiliated with or funded by the CDC Centers of Excellence. This body of work illustrates a community-based system of research by which participants share common problems and use integrated methodologies to produce outputs and effect outcomes that benefit human, animal and environmental health.


Sign in / Sign up

Export Citation Format

Share Document