scholarly journals Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS

2016 ◽  
Vol 113 (37) ◽  
pp. E5389-E5398 ◽  
Author(s):  
Mikayel Aznauryan ◽  
Leonildo Delgado ◽  
Andrea Soranno ◽  
Daniel Nettels ◽  
Jie-rong Huang ◽  
...  

The properties of unfolded proteins are essential both for the mechanisms of protein folding and for the function of the large group of intrinsically disordered proteins. However, the detailed structural and dynamical characterization of these highly dynamic and conformationally heterogeneous ensembles has remained challenging. Here we combine and compare three of the leading techniques for the investigation of unfolded proteins, NMR spectroscopy (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET), with the goal of quantitatively testing their consistency and complementarity and for obtaining a comprehensive view of the unfolded-state ensemble. Using unfolded ubiquitin as a test case, we find that its average dimensions derived from FRET and from structural ensembles calculated using the program X-PLOR-NIH based on NMR and SAXS restraints agree remarkably well; even the shapes of the underlying intramolecular distance distributions are in good agreement, attesting to the reliability of the approaches. The NMR-based results provide a highly sensitive way of quantifying residual structure in the unfolded state. FRET-based nanosecond fluorescence correlation spectroscopy allows long-range distances and chain dynamics to be probed in a time range inaccessible by NMR. The combined techniques thus provide a way of optimally using the complementarity of the available methods for a quantitative structural and dynamical description of unfolded proteins both at the global and the local level.

2017 ◽  
Vol 114 (10) ◽  
pp. E1833-E1839 ◽  
Author(s):  
Andrea Soranno ◽  
Andrea Holla ◽  
Fabian Dingfelder ◽  
Daniel Nettels ◽  
Dmitrii E. Makarov ◽  
...  

Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques.


2020 ◽  
Author(s):  
Franziska Zosel ◽  
Andrea Holla ◽  
Benjamin Schuler

Single-molecule fluorescence spectroscopy has become an important technique for studying the conformational dynamics and folding of proteins. A key step for performing such experiments is the availability of high-quality samples. Here we describe the practical details of a simple and widely applicable strategy for preparing proteins that are site-specifically labeled with a donor and an acceptor dye for single-molecule Förster resonance energy transfer (FRET) experiments. The method is based on introducing two cysteine residues that are labeled with maleimide-functionalized fluorophores, combined with high-resolution chromatography. We discuss how to optimize site-specific labeling even in the absence of orthogonal coupling chemistry and present purification strategies that are suitable for samples ranging from intrinsically disordered proteins to large folded proteins. We also discuss common problems in protein labeling, how to avoid them, and how to stringently control sample quality.<br>


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 140 ◽  
Author(s):  
Sharonda LeBlanc ◽  
Prakash Kulkarni ◽  
Keith Weninger

Intrinsically disordered proteins (IDPs) are often modeled using ideas from polymer physics that suggest they smoothly explore all corners of configuration space. Experimental verification of this random, dynamic behavior is difficult as random fluctuations of IDPs cannot be synchronized across an ensemble. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) is one of the few approaches that are sensitive to transient populations of sub-states within molecular ensembles. In some implementations, smFRET has sufficient time resolution to resolve transitions in IDP behaviors. Here we present experimental issues to consider when applying smFRET to study IDP configuration. We illustrate the power of applying smFRET to IDPs by discussing two cases in the literature of protein systems for which smFRET has successfully reported phosphorylation-induced modification (but not elimination) of the disordered properties that have been connected to impacts on the related biological function. The examples we discuss, PAGE4 and a disordered segment of the GluN2B subunit of the NMDA receptor, illustrate the great potential of smFRET to inform how IDP function can be regulated by controlling the detailed ensemble of disordered states within biological networks.


Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 146 ◽  
Author(s):  
Supriyo Bhattacharya ◽  
Xingcheng Lin

Intrinsically disordered proteins (IDP) are abundant in the human genome and have recently emerged as major therapeutic targets for various diseases. Unlike traditional proteins that adopt a definitive structure, IDPs in free solution are disordered and exist as an ensemble of conformations. This enables the IDPs to signal through multiple signaling pathways and serve as scaffolds for multi-protein complexes. The challenge in studying IDPs experimentally stems from their disordered nature. Nuclear magnetic resonance (NMR), circular dichroism, small angle X-ray scattering, and single molecule Förster resonance energy transfer (FRET) can give the local structural information and overall dimension of IDPs, but seldom provide a unified picture of the whole protein. To understand the conformational dynamics of IDPs and how their structural ensembles recognize multiple binding partners and small molecule inhibitors, knowledge-based and physics-based sampling techniques are utilized in-silico, guided by experimental structural data. However, efficient sampling of the IDP conformational ensemble requires traversing the numerous degrees of freedom in the IDP energy landscape, as well as force-fields that accurately model the protein and solvent interactions. In this review, we have provided an overview of the current state of computational methods for studying IDP structure and dynamics and discussed the major challenges faced in this field.


2014 ◽  
Vol 395 (7-8) ◽  
pp. 689-698 ◽  
Author(s):  
Hagen Hofmann

Abstract In the past decade, single-molecule fluorescence techniques provided important insights into the structure and dynamics of proteins. In particular, our understanding of the heterogeneous conformational ensembles of unfolded and intrinsically disordered proteins (IDPs) improved substantially by a combination of FRET-based single-molecule techniques with concepts from polymer physics. A complete knowledge of the forces that act in unfolded polypeptide chains will not only be important to understand the initial steps of protein folding reactions, but it will also be crucial to rationalize the coupling between ligand-binding and folding of IDPs, and the interaction of denatured proteins with molecular chaperones in the crowded cellular environment. Here, I give a personalized review of some of the key findings from my own research that contributed to a more quantitative understanding of unfolded proteins and their interactions with molecular chaperones.


Author(s):  
Gregory-Neal W. Gomes ◽  
Mickaël Krzeminski ◽  
Ashley Namini ◽  
Erik. W. Martin ◽  
Tanja Mittag ◽  
...  

AbstractIntrinsically disordered proteins (IDPs) have fluctuating heterogeneous conformations, which makes structural characterization challenging, but of great interest, since their conformational ensembles are the link between their sequences and functions. An accurate description of IDP conformational ensembles depends crucially on the amount and quality of the experimental data, how it is integrated, and if it supports a consistent structural picture. We have used an integrative modelling approach to understand how conformational restraints imposed by the most common structural techniques for IDPs: Nuclear Magnetic Resonance (NMR) spectroscopy, Small-angle X-ray Scattering (SAXS), and single-molecule Förster Resonance Energy Transfer (smFRET) reach concordance on structural ensembles for Sic1 and phosphorylated Sic1 (pSic1). To resolve apparent discrepancies between smFRET and SAXS, we integrated SAXS data with non-smFRET (NMR) data and reserved the new smFRET data for Sic1 and pSic1 as an independent validation. The consistency of the SAXS/NMR restrained ensembles with smFRET, which was not guaranteed a priori, indicates that the perturbative effects of NMR or smFRET labels on the Sic1 and pSic1 ensembles are minimal. Furthermore, the mutual agreement with such a diverse set of experimental data suggest that details of the generated ensembles can now be examined with a high degree of confidence to reveal distinguishing features of Sic1 vs. pSic1. From the experimentally well supported ensembles, we find they are consistent with independent biophysical models of Sic1’s ultrasensitive binding to its partner Cdc4. Our results underscore the importance of integrative modelling in calculating and drawing biological conclusions from IDP conformational ensembles.


2020 ◽  
Author(s):  
Franziska Zosel ◽  
Andrea Holla ◽  
Benjamin Schuler

Single-molecule fluorescence spectroscopy has become an important technique for studying the conformational dynamics and folding of proteins. A key step for performing such experiments is the availability of high-quality samples. Here we describe the practical details of a simple and widely applicable strategy for preparing proteins that are site-specifically labeled with a donor and an acceptor dye for single-molecule Förster resonance energy transfer (FRET) experiments. The method is based on introducing two cysteine residues that are labeled with maleimide-functionalized fluorophores, combined with high-resolution chromatography. We discuss how to optimize site-specific labeling even in the absence of orthogonal coupling chemistry and present purification strategies that are suitable for samples ranging from intrinsically disordered proteins to large folded proteins. We also discuss common problems in protein labeling, how to avoid them, and how to stringently control sample quality.<br>


2020 ◽  
Vol 71 (1) ◽  
pp. 391-414 ◽  
Author(s):  
Lauren Ann Metskas ◽  
Elizabeth Rhoades

Intrinsically disordered proteins (IDPs) are now widely recognized as playing critical roles in a broad range of cellular functions as well as being implicated in diverse diseases. Their lack of stable secondary structure and tertiary interactions, coupled with their sensitivity to measurement conditions, stymies many traditional structural biology approaches. Single-molecule Förster resonance energy transfer (smFRET) is now widely used to characterize the physicochemical properties of these proteins in isolation and is being increasingly applied to more complex assemblies and experimental environments. This review provides an overview of confocal diffusion-based smFRET as an experimental tool, including descriptions of instrumentation, data analysis, and protein labeling. Recent papers are discussed that illustrate the unique capability of smFRET to provide insight into aggregation-prone IDPs, protein–protein interactions involving IDPs, and IDPs in complex experimental milieus.


2019 ◽  
Vol 116 (18) ◽  
pp. 8889-8894 ◽  
Author(s):  
Joshua A. Riback ◽  
Micayla A. Bowman ◽  
Adam M. Zmyslowski ◽  
Kevin W. Plaxco ◽  
Patricia L. Clark ◽  
...  

The dimensions that unfolded proteins, including intrinsically disordered proteins (IDPs), adopt in the absence of denaturant remain controversial. We developed an analysis procedure for small-angle X-ray scattering (SAXS) profiles and used it to demonstrate that even relatively hydrophobic IDPs remain nearly as expanded in water as they are in high denaturant concentrations. In contrast, as demonstrated here, most fluorescence resonance energy transfer (FRET) measurements have indicated that relatively hydrophobic IDPs contract significantly in the absence of denaturant. We use two independent approaches to further explore this controversy. First, using SAXS we show that fluorophores employed in FRET can contribute to the observed discrepancy. Specifically, we find that addition of Alexa-488 to a normally expanded IDP causes contraction by an additional 15%, a value in reasonable accord with the contraction reported in FRET-based studies. Second, using our simulations and analysis procedure to accurately extract both the radius of gyration (Rg) and end-to-end distance (Ree) from SAXS profiles, we tested the recent suggestion that FRET and SAXS results can be reconciled if the Rg and Ree are “uncoupled” (i.e., no longer simply proportional), in contrast to the case for random walk homopolymers. We find, however, that even for unfolded proteins, these two measures of unfolded state dimensions remain proportional. Together, these results suggest that improved analysis procedures and a correction for significant, fluorophore-driven interactions are sufficient to reconcile prior SAXS and FRET studies, thus providing a unified picture of the nature of unfolded polypeptide chains in the absence of denaturant.


Sign in / Sign up

Export Citation Format

Share Document