scholarly journals Li-rich antiperovskite superionic conductors based on cluster ions

2017 ◽  
Vol 114 (42) ◽  
pp. 11046-11051 ◽  
Author(s):  
Hong Fang ◽  
Puru Jena

Enjoying great safety, high power, and high energy densities, all-solid-state batteries play a key role in the next generation energy storage devices. However, their development is limited by the lack of solid electrolyte materials that can reach the practically useful conductivities of 10−2 S/cm at room temperature (RT). Here, by exploring a set of lithium-rich antiperovskites composed of cluster ions, we report a lithium superionic conductor, Li3SBF4, that has an estimated 3D RT conductivity of 10−2 S/cm, a low activation energy of 0.210 eV, a giant band gap of 8.5 eV, a small formation energy, a high melting point, and desired mechanical properties. A mixed phase of the material, Li3S(BF4)0.5Cl0.5, with the same simple crystal structure exhibits an RT conductivity as high as 10−1 S/cm and a low activation energy of 0.176 eV. The high ionic conductivity of the crystals is enabled by the thermal-excited vibrational modes of the cluster ions and the large channel size created by mixing the large cluster ion with the small elementary ion.

Author(s):  
Ningyue Zhang ◽  
Guoxu Wang ◽  
Ming Feng ◽  
Li-Zhen Fan

Solid-state batteries (SSBs) with metallic lithium (Li) anodes are regarded as the next-generation high energy and power densities energy storage devices. However, the issues of Li dendrite growth and the...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuaki Kisu ◽  
Sangryun Kim ◽  
Takara Shinohara ◽  
Kun Zhao ◽  
Andreas Züttel ◽  
...  

AbstractHigh-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices. However, they have seen limited progress due to challenges associated with developing electrolytes showing reductive/oxidative stabilities and high ionic conductivities. This paper describes a calcium monocarborane cluster salt in a mixed solvent as a Ca-battery electrolyte with high anodic stability (up to 4 V vs. Ca2+/Ca), high ionic conductivity (4 mS cm−1), and high Coulombic efficiency for Ca plating/stripping at room temperature. The developed electrolyte is a promising candidate for use in room-temperature rechargeable Ca batteries.


2017 ◽  
Vol 5 (39) ◽  
pp. 20969-20977 ◽  
Author(s):  
Eunho Lim ◽  
Won-Gwang Lim ◽  
Changshin Jo ◽  
Jinyoung Chun ◽  
Mok-Hwa Kim ◽  
...  

A Li-ion hybrid supercapacitor (Li-HSC) delivering high energy within seconds (excellent rate performance) with stable cycle life is one of the most highly attractive energy storage devices.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhichang Xiao ◽  
Junwei Han ◽  
Haiyong He ◽  
Xinghao Zhang ◽  
Jing Xiao ◽  
...  

Lithium-ion capacitors (LICs) have attracted much attention considering their efficient combination of high energy density and high-power density. However, to meet the increasing requirements of energy storage devices and the...


Author(s):  
Kai Zhang ◽  
Yuan Xie ◽  
Zhongfan Jia ◽  
Benjamin B. Noble ◽  
Kenichi Oyaizu ◽  
...  

Organic redox molecules exhibiting multi-electron storage and fast electron transfer kinetics are ideal compounds for sustainable high-energy storage devices with high-power output. Nitroxide radical polymers (NRPs) are the representative materials...


2021 ◽  
Author(s):  
Yucai Li ◽  
Yan Zhao ◽  
Shiwei Song ◽  
Jian wang

Abstract Core-shell structured NiCo2S4@NiMoO4 is considered to be one of the most promising electrode materials for supercapacitors due to its high specific capacitance and excellent cycle performance. In this work, we report NiCo2S4@NiMoO4 nanosheets on Ni foam by two-step fabricated method. The as-obtained product has high capacitance of 1102.5 F g− 1 at 1 A g− 1. The as-assembled supercapacitor has also a high energy density of 37.6 W h kg− 1 and superior cycle performance with 85% capacitance retention. The electrode materials reported here might exhibits potential applications in future energy storage devices.


RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20173-20183
Author(s):  
Yasai Wang ◽  
Guilin Feng ◽  
Yang Wang ◽  
Zhenguo Wu ◽  
Yanxiao Chen ◽  
...  

Lithium–sulfur batteries are considered to be promising energy storage devices owing to their high energy density, relatively low price and abundant resources.


2015 ◽  
Vol 3 (37) ◽  
pp. 19144-19147 ◽  
Author(s):  
Wee Siang Vincent Lee ◽  
Erwin Peng ◽  
Dian Chun Choy ◽  
Jun Min Xue

With the advent of next generation wearable technologies, energy storage devices at present not only have to achieve high energy densities, they also need to possess reasonable mechanical robustness.


Sign in / Sign up

Export Citation Format

Share Document