Synthesis of NiCo2S4@NiMoO4 Nanosheets with Excellent Electrochemical Performance for Supercapacitor

Author(s):  
Yucai Li ◽  
Yan Zhao ◽  
Shiwei Song ◽  
Jian wang

Abstract Core-shell structured NiCo2S4@NiMoO4 is considered to be one of the most promising electrode materials for supercapacitors due to its high specific capacitance and excellent cycle performance. In this work, we report NiCo2S4@NiMoO4 nanosheets on Ni foam by two-step fabricated method. The as-obtained product has high capacitance of 1102.5 F g− 1 at 1 A g− 1. The as-assembled supercapacitor has also a high energy density of 37.6 W h kg− 1 and superior cycle performance with 85% capacitance retention. The electrode materials reported here might exhibits potential applications in future energy storage devices.

Author(s):  
Tariq Bashir ◽  
Sara Adeeba Ismail ◽  
Yuheng Song ◽  
Rana Muhammad Irfan ◽  
Shiqi Yang ◽  
...  

Energy storage devices such as batteries hold great importance for society, owing to their high energy density, environmental benignity and low cost. However, critical issues related to their performance and safety still need to be resolved. The periodic table of elements is pivotal to chemistry, physics, biology and engineering and represents a remarkable scientific breakthrough that sheds light on the fundamental laws of nature. Here, we provide an overview of the role of the most prominent elements, including s-block, p-block, transition and inner-transition metals, as electrode materials for lithium-ion battery systems regarding their perspective applications and fundamental properties. We also outline hybrid materials, such as MXenes, transition metal oxides, alloys and graphene oxide. Finally, the challenges and prospects of each element and their derivatives and hybrids for future battery systems are discussed, which may provide guidance towards green, low-cost, versatile and sustainable energy storage devices.


2020 ◽  
Vol 15 (4) ◽  
pp. 498-503
Author(s):  
Jian Wang ◽  
Yan Zhao ◽  
Dong Zhang ◽  
Yucai Li ◽  
Shiwei Song ◽  
...  

Rational design and construction of hybrid capacitor electrode materials with prominent energy and power density plays an indispensable role for its potential application in energy storage devices. In this work, the nanoflower-like NiCo2O4 samples are successfully prepared on Ni foam via a facile hydrothermal method. The as-fabricated NiCo2O4 samples exhibit superior electrochemical performance with a high specific capacitance of 444.4 F g–1 at 1 A g–1 and excellent capacitance retention. In addition, the as-fabricated device presents a high energy density of 0.298 mWh cm–3 at a power density of 5.71 mW cm–3 and excellent cycle stability with the capacitance retention of 75.6% after 10000 cycles, indicating a promising application as electrodes for energy storage device.


Nanoscale ◽  
2021 ◽  
Author(s):  
Akbar Mohammadi Zardkhoshoui ◽  
Bahareh ameri ◽  
Saied Saeed Hosseiny Davarani

Thanks to the attractive structural characteristics and unique physicochemical properties, mixed metal selenides (MMSes) can be considered as encouraging electrode materials for energy storage devices. Herein, a straightforward and efficient...


NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050082
Author(s):  
Lei Su ◽  
Chunyong Zhang ◽  
Li Shu ◽  
Linna Huang ◽  
Jianning Li ◽  
...  

A series of metal oxide nanocomposites have been successfully synthesized by electrospinning technology. The obtained nanocomposites (Cu2O-Mn3O4-NiO) are an ordered arrangement of metal oxide particles (10[Formula: see text]nm), with the shape like bead chain. The acquired Cu2O-Mn3O4-NiO ternary nanocomposites were used as electrode materials to manufacture a supercapacitor. Electrochemical tests showed that the synthesis of nanocomposites made of electrode materials had good electrochemical performance in 6[Formula: see text]mol/L KOH electrolyte. The results showed that at a scan rate of 5[Formula: see text]mV/s, the specific capacitance of Cu2O-Mn3O4-NiO had a larger specific capacitance of 1306[Formula: see text]F/g than NiO, Cu2O-NiO and Mn3O4-NiO. The excellent electrochemical performance showed that the electrostatic spinning method is an effective technology for developing nanocomposites for energy storage devices.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102504-102512 ◽  
Author(s):  
J. M. Gonçalves ◽  
R. R. Guimarães ◽  
C. V. Nunes ◽  
A. Duarte ◽  
B. B. N. S. Brandão ◽  
...  

Described herein is a composite material based on rGO and α-NiCo(OH)2 nanoparticles combining very fast charge/discharge processes with the high energy density of batteries, suitable for application in high performance energy storage devices.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 121 ◽  
Author(s):  
Himanshu ◽  
S. Rao ◽  
Dinah Punnoose ◽  
P. Sathishkumar ◽  
Chandu Gopi ◽  
...  

This paper presents an electrode with a core/shell geometry and a unique four-layered porous wrinkled surface for pseudocapacitive supercapacitor applications. To design the electrode, Ni foam was used as a substrate, where the harmonious features of four constituents, ZnO (Z), NiS (N), PEDOT:PSS (P), and MnO2 (M) improved the supercapacitor electrochemical performance by mitigating the drawbacks of each other component. Cyclic voltammetry and galvanostatic charge discharge measurements confirmed that the ZNPM hybrid electrode exhibited excellent capacitive properties in 2 M KOH compared to the ZNP, ZN, and solely Z electrodes. The ZNPM electrode showed superior electrochemical capacitive performance and improved electrical conductivity with a high specific capacitance of 2072.52 F g−1 at 5 mA, and a high energy density of 31 Wh kg−1 at a power density of 107 W kg−1. Overall, ZNPM is a promising combination electrode material that can be used in supercapacitors and other electrochemical energy conversion/storage devices.


2021 ◽  
Vol 7 (3) ◽  
pp. 151-162
Author(s):  
Gabriela Queirós ◽  
Natalia Rey-Raap ◽  
Clara Pereira ◽  
Manuel Fernando R. Pereira

Supercapacitors are energy storage devices that have received much interest in the past decade. These devices have unique characteristics, such as high energy density, fast charging, extensive life cycle, and excellent stability. Currently, wearable electronic gadgets have appeared as an interesting application for flexible supercapacitors, in which lightness and flexibility of the electrodes are two of the most important properties. In addition, the materials used as electrodes severely affect the behavior of these devices. Carbon nanomaterials are the most proficient and most studied electrode materials in flexible supercapacitors. Among them, carbon nanotubes (CNTs) have been extensively studied owing to their excellent mechanical and electrical properties. Therefore, this short review focuses on the new progress in the use of CNT materials as electrodes in flexible energy storage devices.


2016 ◽  
Vol 4 (1) ◽  
pp. 71-90 ◽  
Author(s):  
Jie Wang ◽  
Shengyang Dong ◽  
Bing Ding ◽  
Ya Wang ◽  
Xiaodong Hao ◽  
...  

Abstract Among various energy-storage devices, electrochemical capacitors (ECs) are prominent power provision but show relatively low energy density. One way to increase the energy density of ECs is to move from carbon-based electric double-layer capacitors to pseudocapacitors, which manifest much higher capacitance. However, compared with carbon materials, the pseudocapacitive electrodes suffer from high resistance for electron and/or ion transfer, significantly restricting their capacity, rate capability and cyclability. Rational design of electrode materials offers opportunities to optimize their electrochemical performance, leading to devices with high energy density while maintaining high power density. This paper reviews the different approaches of electrodes striving to advance the energy and power density of ECs.


2021 ◽  
Author(s):  
Chengkang Luo ◽  
Xiao Li ◽  
Xiang Wu

With the excessive consumption of non-renewable energy sources and subsequent environmental pollution, one converts their research focuses to develop some emerging energy storage devices with desired performances. Aqueous zinc-ion batteries...


Sign in / Sign up

Export Citation Format

Share Document