scholarly journals Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3

2017 ◽  
Vol 114 (34) ◽  
pp. E7197-E7204 ◽  
Author(s):  
Marie-Kristin Nagel ◽  
Kamila Kalinowska ◽  
Karin Vogel ◽  
Gregory D. Reynolds ◽  
Zhixiang Wu ◽  
...  

Clathrin-mediated endocytosis of plasma membrane proteins is an essential regulatory process that controls plasma membrane protein abundance and is therefore important for many signaling pathways, such as hormone signaling and biotic and abiotic stress responses. On endosomal sorting, plasma membrane proteins maybe recycled or targeted for vacuolar degradation, which is dependent on ubiquitin modification of the cargos and is driven by the endosomal sorting complexes required for transport (ESCRTs). Components of the ESCRT machinery are highly conserved among eukaryotes, but homologs of ESCRT-0 that are responsible for recognition and concentration of ubiquitylated proteins are absent in plants. Recently several ubiquitin-binding proteins have been identified that serve in place of ESCRT-0; however, their function in ubiquitin recognition and endosomal trafficking is not well understood yet. In this study, we identified Src homology-3 (SH3) domain-containing protein 2 (SH3P2) as a ubiquitin- and ESCRT-I–binding protein that functions in intracellular trafficking. SH3P2 colocalized with clathrin light chain-labeled punctate structures and interacted with clathrin heavy chain in planta, indicating a role for SH3P2 in clathrin-mediated endocytosis. Furthermore, SH3P2 cofractionates with clathrin-coated vesicles (CCVs), suggesting that it associates with CCVs in planta. Mutants of SH3P2 and VPS23 genetically interact, suggesting that they could function in the same pathway. Based on these results, we suggest a role of SH3P2 as an ubiquitin-binding protein that binds and transfers ubiquitylated proteins to the ESCRT machinery.

Author(s):  
Collin L Juurakko ◽  
Melissa Bredow ◽  
Takato Nakayama ◽  
Hiroyuki Imai ◽  
Yukio Kawamura ◽  
...  

Abstract In order to survive sub-zero temperatures, some plants undergo cold acclimation where low, non-freezing temperatures and/or shortened day lengths allow cold hardening and survival during subsequent freeze events. Central to this response is the plasma membrane, where low-temperature is perceived and cellular homeostasis must be preserved by maintaining membrane integrity. Here, we present the first plasma membrane proteome of cold-acclimated Brachypodium distachyon, a model species for the study of monocot crops. A time course experiment investigated cold acclimation-induced changes in the proteome following two-phase partitioning plasma membrane enrichment and label-free quantification by nano-liquid chromatography mass spectrophotometry. Two days of cold acclimation were sufficient for membrane protection as well as an initial increase in sugar levels, and coincided with a significant change in the abundance of 154 proteins. Prolonged cold acclimation resulted in further increases in soluble sugars and abundance changes in more than 680 proteins, suggesting both a necessary early response to low-temperature treatment, as well as a sustained cold acclimation response elicited over several days. A meta-analysis revealed that the identified plasma membrane proteins have known roles in low-temperature tolerance, metabolism, transport, and pathogen defense as well as drought, osmotic stress and salt resistance suggesting crosstalk between stress responses, such that cold acclimation may prime plants for other abiotic and biotic stresses. The plasma membrane proteins identified here present keys to an understanding of cold tolerance in monocot crops and the hope of addressing economic losses associated with modern climate-mediated increases in frost events.


2018 ◽  
Vol 46 (3) ◽  
pp. 537-545 ◽  
Author(s):  
Marisa S. Otegui

The degradation of plasma membrane and other membrane-associated proteins require their sorting at endosomes for delivery to the vacuole. Through the endocytic pathway, ubiquitinated membrane proteins (cargo) are delivered to endosomes where the ESCRT (endosomal sorting complex required for transport) machinery sorts them into intralumenal vesicles for degradation. Plants contain both conserved and plant-specific ESCRT subunits. In this review, I discuss the role of characterized plant ESCRT components, the evolutionary diversification of the plant ESCRT machinery, and a recent study showing that endosomal intralumenal vesicles form in clusters of concatenated vesicle buds by temporally uncoupling membrane constriction from membrane fission.


Author(s):  
Collin L Juurakko ◽  
Melissa Bredow ◽  
Takato Nakayama ◽  
Hiroyuki Imai ◽  
Yukio Kawamura ◽  
...  

Abstract In order to survive sub-zero temperatures, some plants undergo cold acclimation where low, non-freezing temperatures and/or shortened day lengths allow cold hardening and survival during subsequent freeze events. Central to this response is the plasma membrane, where low-temperature is perceived and cellular homeostasis must be preserved by maintaining membrane integrity. Here, we present the first plasma membrane proteome of cold-acclimated Brachypodium distachyon, a model species for the study of monocot crops. A time course experiment investigated cold acclimation-induced changes in the proteome following two-phase partitioning plasma membrane enrichment and label-free quantification by nano-liquid chromatography mass spectrophotometry. Two days of cold acclimation were sufficient for membrane protection as well as an initial increase in sugar levels, and coincided with a significant change in the abundance of 154 proteins. Prolonged cold acclimation resulted in further increases in soluble sugars and abundance changes in more than 680 proteins, suggesting both a necessary early response to low-temperature treatment, as well as a sustained cold acclimation response elicited over several days. A meta-analysis revealed that the identified plasma membrane proteins have known roles in low-temperature tolerance, metabolism, transport, and pathogen defense as well as drought, osmotic stress and salt resistance suggesting crosstalk between stress responses, such that cold acclimation may prime plants for other abiotic and biotic stresses. The plasma membrane proteins identified here present keys to an understanding of cold tolerance in monocot crops and the hope of addressing economic losses associated with modern climate-mediated increases in frost events.


2021 ◽  
Author(s):  
Collin L. Juurakko ◽  
Melissa Bredow ◽  
Takato Nakayama ◽  
Hiroyuki Imai ◽  
Yukio Kawamura ◽  
...  

ABSTRACTIn order to survive sub-zero temperatures, some plants undergo cold acclimation where low, non-freezing temperatures and/or shortened day lengths allow cold hardening and survival during subsequent freeze events. Central to this response is the plasma membrane, where low-temperature is perceived and cellular homeostasis must be preserved by maintaining membrane integrity. Here, we present the first plasma membrane proteome of cold-acclimatedBrachypodium distachyon, a model species for the study of monocot crops. A time course experiment investigated cold acclimation-induced changes in the proteome following two-phase partitioning plasma membrane enrichment and label-free quantification by nano-liquid chromatography mass spectrophotometry. Two days of cold acclimation were sufficient for membrane protection as well as an initial increase in sugar levels, and coincided with a significant change in the abundance of 154 proteins. Prolonged cold acclimation resulted in further increases in soluble sugars and abundance changes in more than 680 proteins, suggesting both a necessary early response to low-temperature treatment, as well as a sustained cold acclimation response elicited over several days. A meta-analysis revealed that the identified plasma membrane proteins have known roles in low-temperature tolerance, metabolism, transport, and pathogen defense as well as drought, osmotic stress and salt resistance suggesting crosstalk between stress responses, such that cold acclimation may prime plants for other abiotic and biotic stresses. The plasma membrane proteins identified here present keys to an understanding of cold tolerance in monocot crops and the hope of addressing economic losses associated with modern climate-mediated increases in frost events.


2009 ◽  
Vol 18 (6) ◽  
pp. 527-535 ◽  
Author(s):  
Andreas Lange ◽  
Claudia Kistler ◽  
Tanja B. Jutzi ◽  
Alexandr V. Bazhin ◽  
Claus Detlev Klemke ◽  
...  

2011 ◽  
Vol 286 (12) ◽  
pp. 10058-10065 ◽  
Author(s):  
Chunjuan Huang ◽  
Amy Chang

The vacuolar proton-translocating ATPase (V-ATPase) plays a major role in organelle acidification and works together with other ion transporters to maintain pH homeostasis in eukaryotic cells. We analyzed a requirement for V-ATPase activity in protein trafficking in the yeast secretory pathway. Deficiency of V-ATPase activity caused by subunit deletion or glucose deprivation results in missorting of newly synthesized plasma membrane proteins Pma1 and Can1 directly from the Golgi to the vacuole. Vacuolar mislocalization of Pma1 is dependent on Gga adaptors although no Pma1 ubiquitination was detected. Proper cell surface targeting of Pma1 was rescued in V-ATPase-deficient cells by increasing the pH of the medium, suggesting that missorting is the result of aberrant cytosolic pH. In addition to mislocalization of the plasma membrane proteins, Golgi membrane proteins Kex2 and Vrg4 are also missorted to the vacuole upon loss of V-ATPase activity. Because the missorted cargos have distinct trafficking routes, we suggest a pH dependence for multiple cargo sorting events at the Golgi.


1997 ◽  
Vol 1324 (2) ◽  
pp. 320-332 ◽  
Author(s):  
Bruce I Meiklejohn ◽  
Noorulhuda A Rahman ◽  
Deborah A Roess ◽  
B.George Barisas

Sign in / Sign up

Export Citation Format

Share Document