scholarly journals Extracellular matrix protein 1 promotes follicular helper T cell differentiation and antibody production

2018 ◽  
Vol 115 (34) ◽  
pp. 8621-8626 ◽  
Author(s):  
Lan He ◽  
Wangpeng Gu ◽  
Meng Wang ◽  
Xiaoyan Chang ◽  
Xiaoyu Sun ◽  
...  

T-follicular helper (TFH) cells are a subset of CD4+ helper T cells that help germinal center (GC) B-cell differentiation and high-affinity antibody production during germinal center reactions. Whether important extracellular molecules control TFH differentiation is not fully understood. Here, we demonstrate that a secreted protein extracellular matrix protein 1 (ECM1) is critical for TFH differentiation and antibody response. A lack of ECM1 inhibited TFH cell development and impaired GC B-cell reactions and antigen-specific antibody production in an antigen-immunized mouse model. ECM1 was induced by IL-6 and IL-21 in TFH cells, promoting TFH differentiation by down-regulating the level of STAT5 phosphorylation and up-regulating Bcl6 expression. Furthermore, injection of recombinant ECM1 protein into mice infected with PR8 influenza virus promoted protective immune responses effectively, by enhancing TFH differentiation and neutralizing antibody production. Collectively, our data identify ECM1 as a soluble protein to promote TFH cell differentiation and antibody production.

1997 ◽  
Vol 16 (5) ◽  
pp. 289-292 ◽  
Author(s):  
Maureen R. Johnson ◽  
Douglas J. Wilkin ◽  
Hans L. Vos ◽  
Rosa Isela Ortiz De Luna ◽  
Anindya M. Dehejia ◽  
...  

2021 ◽  
Author(s):  
C. N. Jondle ◽  
K. E. Johnson ◽  
W. P. Mboko ◽  
V. L. Tarakanova

Gammaherpesviruses are ubiquitous pathogens that establish life-long infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We showed that global expression of the antiviral and tumor-suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts expansion of the latent viral reservoir. In this study we found that T cell intrinsic IRF-1 expression recapitulates some aspects of antiviral state imposed by IRF-1 during chronic MHV68 infection, including attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to unhindered rise of IL-17A-expressing and follicular helper T cell populations, two CD4 + T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4 + T cell subsets that support chronic gammaherpesvirus infection. Importance Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, though exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4 + T follicular helper population. Further, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.


Sign in / Sign up

Export Citation Format

Share Document