scholarly journals Effective design principles for leakless strand displacement systems

2018 ◽  
Vol 115 (52) ◽  
pp. E12182-E12191 ◽  
Author(s):  
Boya Wang ◽  
Chris Thachuk ◽  
Andrew D. Ellington ◽  
Erik Winfree ◽  
David Soloveichik

Artificially designed molecular systems with programmable behaviors have become a valuable tool in chemistry, biology, material science, and medicine. Although information processing in biological regulatory pathways is remarkably robust to error, it remains a challenge to design molecular systems that are similarly robust. With functionality determined entirely by secondary structure of DNA, strand displacement has emerged as a uniquely versatile building block for cell-free biochemical networks. Here, we experimentally investigate a design principle to reduce undesired triggering in the absence of input (leak), a side reaction that critically reduces sensitivity and disrupts the behavior of strand displacement cascades. Inspired by error correction methods exploiting redundancy in electrical engineering, we ensure a higher-energy penalty to leak via logical redundancy. Our design strategy is, in principle, capable of reducing leak to arbitrarily low levels, and we experimentally test two levels of leak reduction for a core “translator” component that converts a signal of one sequence into that of another. We show that the leak was not measurable in the high-redundancy scheme, even for concentrations that are up to 100 times larger than typical. Beyond a single translator, we constructed a fast and low-leak translator cascade of nine strand displacement steps and a logic OR gate circuit consisting of 10 translators, showing that our design principle can be used to effectively reduce leak in more complex chemical systems.

2020 ◽  
Vol 48 (19) ◽  
pp. 10691-10701
Author(s):  
Chanjuan Liu ◽  
Yuan Liu ◽  
Enqiang Zhu ◽  
Qiang Zhang ◽  
Xiaopeng Wei ◽  
...  

Abstract Designing biochemical systems that can be effectively used in diverse fields, including diagnostics, molecular computing and nanomachines, has long been recognized as an important goal of molecular programming and DNA nanotechnology. A key issue in the development of such practical devices on the nanoscale lies in the development of biochemical components with information-processing capacity. In this article, we propose a molecular device that utilizes DNA strand displacement networks and allows interactive inhibition between two input signals; thus, it is termed a cross-inhibitor. More specifically, the device supplies each input signal with a processor such that the processing of one input signal will interdict the signal of the other. Biochemical experiments are conducted to analyze the interdiction performance with regard to effectiveness, stability and controllability. To illustrate its feasibility, a biochemical framework grounded in this mechanism is presented to determine the winner of a tic-tac-toe game. Our results highlight the potential for DNA strand displacement cascades to act as signal controllers and event triggers to endow molecular systems with the capability of controlling and detecting events and signals.


2018 ◽  
Author(s):  
Natalie E. C. Haley ◽  
Thomas E. Ouldridge ◽  
Alessandro Geraldini ◽  
Ard A. Louis ◽  
Jonathan Bath ◽  
...  

AbstractRecent years have seen great advances in the development of synthetic self-assembling molecular systems. Designing out-of-equilibrium architectures, however, requires a more subtle control over the thermodynamics and kinetics of reactions. We propose a new mechanism for enhancing thermodynamic drive of DNA strand displacement reactions whilst barely perturbing forward reaction rates - introducing mismatches in an internal location within the initial duplex. Through a combination of experiment and simulation, we demonstrate that displacement rates are strongly sensitive to mismatch location and can be tuned by rational design. By placing mismatches away from duplex ends, the thermodynamic drive for a strand-displacement reaction can be varied without significantly affecting the forward reaction rate. This hidden thermodynamic driving motif is ideal for the engineering of nonequilibrium systems that rely on catalytic control and must be robust to leak reactions.


2017 ◽  
Vol 121 (12) ◽  
pp. 2594-2602 ◽  
Author(s):  
Xiaoping Olson ◽  
Shohei Kotani ◽  
Bernard Yurke ◽  
Elton Graugnard ◽  
William L. Hughes

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Hui Lv ◽  
Qian Li ◽  
Jiye Shi ◽  
Fei Wang ◽  
Chunhai Fan

Nano Letters ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1368-1374
Author(s):  
Jinbo Zhu ◽  
Filip Bošković ◽  
Bao-Nguyen T. Nguyen ◽  
Jonathan R. Nitschke ◽  
Ulrich F. Keyser

Talanta ◽  
2019 ◽  
Vol 200 ◽  
pp. 487-493 ◽  
Author(s):  
Raja Chinnappan ◽  
Rawa Mohammed ◽  
Ahmed Yaqinuddin ◽  
Khalid Abu-Salah ◽  
Mohammed Zourob

2015 ◽  
Vol 58 (10) ◽  
pp. 1515-1523 ◽  
Author(s):  
Yafei Dong ◽  
Chen Dong ◽  
Fei Wan ◽  
Jing Yang ◽  
Cheng Zhang

Sign in / Sign up

Export Citation Format

Share Document