scholarly journals Structural snapshots of OxyR reveal the peroxidatic mechanism of H2O2 sensing

2018 ◽  
Vol 115 (50) ◽  
pp. E11623-E11632 ◽  
Author(s):  
Brandán Pedre ◽  
David Young ◽  
Daniel Charlier ◽  
Álvaro Mourenza ◽  
Leonardo Astolfi Rosado ◽  
...  

Hydrogen peroxide (H2O2) is a strong oxidant capable of oxidizing cysteinyl thiolates, yet only a few cysteine-containing proteins have exceptional reactivity toward H2O2. One such example is the prokaryotic transcription factor OxyR, which controls the antioxidant response in bacteria, and which specifically and rapidly reduces H2O2. In this study, we present crystallographic evidence for the H2O2-sensing mechanism and H2O2-dependent structural transition of Corynebacterium glutamicum OxyR by capturing the reduced and H2O2-bound structures of a serine mutant of the peroxidatic cysteine, and the full-length crystal structure of disulfide-bonded oxidized OxyR. In the H2O2-bound structure, we pinpoint the key residues for the peroxidatic reduction of H2O2, and relate this to mutational assays showing that the conserved active-site residues T107 and R278 are critical for effective H2O2 reduction. Furthermore, we propose an allosteric mode of structural change, whereby a localized conformational change arising from H2O2-induced intramolecular disulfide formation drives a structural shift at the dimerization interface of OxyR, leading to overall changes in quaternary structure and an altered DNA-binding topology and affinity at the catalase promoter region. This study provides molecular insights into the overall OxyR transcription mechanism regulated by H2O2.

Science ◽  
2020 ◽  
Vol 369 (6499) ◽  
pp. 59-64 ◽  
Author(s):  
Narsis Attar ◽  
Oscar A. Campos ◽  
Maria Vogelauer ◽  
Chen Cheng ◽  
Yong Xue ◽  
...  

Eukaryotic histone H3-H4 tetramers contain a putative copper (Cu2+) binding site at the H3-H3′ dimerization interface with unknown function. The coincident emergence of eukaryotes with global oxygenation, which challenged cellular copper utilization, raised the possibility that histones may function in cellular copper homeostasis. We report that the recombinant Xenopus laevis H3-H4 tetramer is an oxidoreductase enzyme that binds Cu2+ and catalyzes its reduction to Cu1+ in vitro. Loss- and gain-of-function mutations of the putative active site residues correspondingly altered copper binding and the enzymatic activity, as well as intracellular Cu1+ abundance and copper-dependent mitochondrial respiration and Sod1 function in the yeast Saccharomyces cerevisiae. The histone H3-H4 tetramer, therefore, has a role other than chromatin compaction or epigenetic regulation and generates biousable Cu1+ ions in eukaryotes.


Author(s):  
Navaneethakrishnan Krishnamoorthy

The novel coronavirus SARS-CoV2 (CoV2) emerged in December 2019. This virus has 88% genomic similarity with SARS-CoV (CoV), and both viruses largely depend on their main protease (Mpro) to regulate infection. Mpro thus represents an attractive target for anti-SARS drug design. The CoV and CoV2 Mpro are 97% identical at the sequence level, with 12 variable residues, and their X-ray structures appear similar. We thus structurally analysed how these variable residues affect the intra-molecular interactions between key residues in the CoV2 Mpro active-site. Compared to CoV Mpro, the 12 divergent residues in CoV2 Mpro exhibit modified intra-molecular interaction networks that ultimately restructure the molecular micro-environment. These altered networks also indirectly affect the networks of other active-site residues at the entrance (T26, M49 and Q192) and near the catalytic region (F140, H163, H164, M165 and H172) of the Mpro. This suggest CoV2 indirectly (via neighbours) reshape key molecular networks around the Mpro active-site. It seems that the CoV2 Mpro deceives us with its apparent structurally identical to the CoV Mpro while this viral system accumulates mass mutations (12 variable residues) at key positions. Some of these identified CoV2 Mpro networks at the active-site might guide design of efficient CoV2 Mpro inhibitors.


2018 ◽  
Vol 115 (51) ◽  
pp. E11943-E11950 ◽  
Author(s):  
Maria Luisa Romero Romero ◽  
Fan Yang ◽  
Yu-Ru Lin ◽  
Agnes Toth-Petroczy ◽  
Igor N. Berezovsky ◽  
...  

Abundant and essential motifs, such as phosphate-binding loops (P-loops), are presumed to be the seeds of modern enzymes. The Walker-A P-loop is absolutely essential in modern NTPase enzymes, in mediating binding, and transfer of the terminal phosphate groups of NTPs. However, NTPase function depends on many additional active-site residues placed throughout the protein’s scaffold. Can motifs such as P-loops confer function in a simpler context? We applied a phylogenetic analysis that yielded a sequence logo of the putative ancestral Walker-A P-loop element: a β-strand connected to an α-helix via the P-loop. Computational design incorporated this element into de novo designed β-α repeat proteins with relatively few sequence modifications. We obtained soluble, stable proteins that unlike modern P-loop NTPases bound ATP in a magnesium-independent manner. Foremost, these simple P-loop proteins avidly bound polynucleotides, RNA, and single-strand DNA, and mutations in the P-loop’s key residues abolished binding. Binding appears to be facilitated by the structural plasticity of these proteins, including quaternary structure polymorphism that promotes a combined action of multiple P-loops. Accordingly, oligomerization enabled a 55-aa protein carrying a single P-loop to confer avid polynucleotide binding. Overall, our results show that the P-loop Walker-A motif can be implemented in small and simple β-α repeat proteins, primarily as a polynucleotide binding motif.


2012 ◽  
Vol 78 (8) ◽  
pp. 2631-2637 ◽  
Author(s):  
Lixia Tang ◽  
Xuechen Zhu ◽  
Huayu Zheng ◽  
Rongxiang Jiang ◽  
Maja Majerić Elenkov

ABSTRACTHalohydrin dehalogenase fromAgrobacterium radiobacterAD1 (HheC) is a valuable tool in the preparation ofRenantiomers of epoxides and β-substituted alcohols. In contrast, the halohydrin dehalogenase fromArthrobactersp. AD2 (HheA) shows a lowSenantioselectivity toward most aromatic substrates. Here, three amino acids (V136, L141, and N178) located in the two neighboring active-site loops of HheA were proposed to be the key residues for controlling enantioselectivity. They were subjected to saturation mutagenesis aimed at evolving anS-selective enzyme. This led to the selection of two outstanding mutants (the V136Y/L141G and N178A mutants). The double mutant displayed an inverted enantioselectivity (fromSenantioselectivity [ES] = 1.7 toRenantioselectivity [ER] = 13) toward 2-chloro-1-phenylethanol without compromising enzyme activity. Strikingly, the N178A mutant showed a large enantioselectivity improvement (ES> 200) and a 5- to 6-fold-enhanced specific activity toward (S)-2-chloro-1-phenylethanol. Further analysis revealed that those mutations produced some interference for the binding of nonfavored enantiomers which could account for the observed enantioselectivities. Our work demonstrated that those three active-site residues are indeed crucial in modulating the enantioselectivity of HheA and that a semirational design strategy has great potential for rapid creation of novel industrial biocatalysts.


2017 ◽  
Vol 14 (10) ◽  
pp. 1122-1137 ◽  
Author(s):  
Nivedita Singh ◽  
Parameswaran Saravanan ◽  
M.S. Thakur ◽  
Sanjukta Patra

Background: Phosphodiesterases 9A (PDE9A) is one of the prominent regulating enzymes of the signal transduction pathway having highest catalytic affinity for second messenger, cGMP. When the cGMP level is lowered, an uncontrolled expression of PDE9A may lead to various neurodegenerative diseases. To regulate the catalytic activity of PDE9A, potent inhibitors are needed. Objective: The primary objective of the present study was to develop new xanthine based inhibitors targeting PDE9A. This study was an attempt to bring structural diversification in PDE9A inhibitor development because most of the existing inhibitors are constructed over pyrazolopyrimidinone scaffold. Methods: Manual designing and parallel molecular docking approach were used for the development of xanthine derivatives. In this study, N1, N3, N9 and C8 positions of xanthine scaffold were selected as substitution sites to design 200 new compounds. Reverse docking and pharmaceutical analyses were used for final validation of most promising compounds. Results: By keeping free energy of binding cut-off of -6.0 kcal/mol, 52 compounds were screened. The compounds with substitution at N1, N3 and C8 positions of xanthine showed good occupancy in PDE9A active site pocket with a significant interaction pattern. This was further validated by screening different factors such as free energy of binding, inhibition constant and interacting active site residues in the 5Å region. Substitution at C8 position with phenyl substituent determined the inhibition affinity of compounds towards PDE9A by establishing a strong hydrophobic - hydrophobic interaction. The alkyl chain at N1 position generated selectivity of compounds towards PDE9A. The aromatic fragment at N3 position increased the binding affinity of compounds. Thus, by comparative docking study, it was found that compound 39-42 formed selective interaction towards PDE9A over other members of the PDE superfamily. Conclusion: From the present study, N1, N3 and C8 positions of xanthine were concluded as the best sites for substitution for the generation of potent PDE9A inhibitors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Charles Bou-Nader ◽  
Frederick W. Stull ◽  
Ludovic Pecqueur ◽  
Philippe Simon ◽  
Vincent Guérineau ◽  
...  

AbstractFolate enzyme cofactors and their derivatives have the unique ability to provide a single carbon unit at different oxidation levels for the de novo synthesis of amino-acids, purines, or thymidylate, an essential DNA nucleotide. How these cofactors mediate methylene transfer is not fully settled yet, particularly with regard to how the methylene is transferred to the methylene acceptor. Here, we uncovered that the bacterial thymidylate synthase ThyX, which relies on both folate and flavin for activity, can also use a formaldehyde-shunt to directly synthesize thymidylate. Combining biochemical, spectroscopic and anaerobic crystallographic analyses, we showed that formaldehyde reacts with the reduced flavin coenzyme to form a carbinolamine intermediate used by ThyX for dUMP methylation. The crystallographic structure of this intermediate reveals how ThyX activates formaldehyde and uses it, with the assistance of active site residues, to methylate dUMP. Our results reveal that carbinolamine species promote methylene transfer and suggest that the use of a CH2O-shunt may be relevant in several other important folate-dependent reactions.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


Sign in / Sign up

Export Citation Format

Share Document