scholarly journals Fine-scale damage estimates of particulate matter air pollution reveal opportunities for location-specific mitigation of emissions

2019 ◽  
Vol 116 (18) ◽  
pp. 8775-8780 ◽  
Author(s):  
Andrew L. Goodkind ◽  
Christopher W. Tessum ◽  
Jay S. Coggins ◽  
Jason D. Hill ◽  
Julian D. Marshall

Fine particulate matter (PM2.5) air pollution has been recognized as a major source of mortality in the United States for at least 25 years, yet much remains unknown about which sources are the most harmful, let alone how best to target policies to mitigate them. Such efforts can be improved by employing high-resolution geographically explicit methods for quantifying human health impacts of emissions of PM2.5 and its precursors. Here, we provide a detailed examination of the health and economic impacts of PM2.5 pollution in the United States by linking emission sources with resulting pollution concentrations. We estimate that anthropogenic PM2.5 was responsible for 107,000 premature deaths in 2011, at a cost to society of $886 billion. Of these deaths, 57% were associated with pollution caused by energy consumption [e.g., transportation (28%) and electricity generation (14%)]; another 15% with pollution caused by agricultural activities. A small fraction of emissions, concentrated in or near densely populated areas, plays an outsized role in damaging human health with the most damaging 10% of total emissions accounting for 40% of total damages. We find that 33% of damages occur within 8 km of emission sources, but 25% occur more than 256 km away, emphasizing the importance of tracking both local and long-range impacts. Our paper highlights the importance of a fine-scale approach as marginal damages can vary by over an order of magnitude within a single county. Information presented here can assist mitigation efforts by identifying those sources with the greatest health effects.

2019 ◽  
Vol 116 (40) ◽  
pp. 19857-19862 ◽  
Author(s):  
Peter Tschofen ◽  
Inês L. Azevedo ◽  
Nicholas Z. Muller

Emissions of most pollutants that result in fine particulate matter (PM2.5) formation have been decreasing in the United States. However, this trend has not been uniform across all sectors or regions of the economy. We use integrated assessment models (IAMs) to compute marginal damages for PM2.5-related emissions for each county in the contiguous United States and match location-specific emissions with these marginal damages to compute economy-wide gross external damage (GED) due to premature mortality. We note 4 key findings: First, economy-wide, GED has decreased by more than 20% from 2008 to 2014. Second, while much of the air pollution policies have focused to date on the electricity sector, damages from farms are now larger than those from utilities. Indeed, farms have become the largest contributor to air pollution damages from PM2.5-related emissions. Third, 4 sectors, comprising less than 20% of the national gross domestic product (GDP), are responsible for ∼75% of GED attributable to economic activities. Fourth, uncertainty in GED estimates tends to be high for sectors with predominantly ground-level emissions because these emissions are usually estimated and not measured. These findings suggest that policymakers should target further emissions reductions from such sectors, particularly in transportation and agriculture.


Sign in / Sign up

Export Citation Format

Share Document