scholarly journals Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis

2019 ◽  
Vol 116 (18) ◽  
pp. 9030-9039 ◽  
Author(s):  
Alexandra M. Nicaise ◽  
Laura J. Wagstaff ◽  
Cory M. Willis ◽  
Carolyn Paisie ◽  
Harshpreet Chandok ◽  
...  

Cellular senescence is a form of adaptive cellular physiology associated with aging. Cellular senescence causes a proinflammatory cellular phenotype that impairs tissue regeneration, has been linked to stress, and is implicated in several human neurodegenerative diseases. We had previously determined that neural progenitor cells (NPCs) derived from induced pluripotent stem cell (iPSC) lines from patients with primary progressive multiple sclerosis (PPMS) failed to promote oligodendrocyte progenitor cell (OPC) maturation, whereas NPCs from age-matched control cell lines did so efficiently. Herein, we report that expression of hallmarks of cellular senescence were identified in SOX2+ progenitor cells within white matter lesions of human progressive MS (PMS) autopsy brain tissues and iPS-derived NPCs from patients with PPMS. Expression of cellular senescence genes in PPMS NPCs was found to be reversible by treatment with rapamycin, which then enhanced PPMS NPC support for oligodendrocyte (OL) differentiation. A proteomic analysis of the PPMS NPC secretome identified high-mobility group box-1 (HMGB1), which was found to be a senescence-associated inhibitor of OL differentiation. Transcriptome analysis of OPCs revealed that senescent NPCs induced expression of epigenetic regulators mediated by extracellular HMGB1. Lastly, we determined that progenitor cells are a source of elevated HMGB1 in human white matter lesions. Based on these data, we conclude that cellular senescence contributes to altered progenitor cell functions in demyelinated lesions in MS. Moreover, these data implicate cellular aging and senescence as a process that contributes to remyelination failure in PMS, which may impact how this disease is modeled and inform development of future myelin regeneration strategies.

2014 ◽  
Vol 21 (5) ◽  
pp. 666-668 ◽  
Author(s):  
Marina Herwerth ◽  
Benedikt J Schwaiger ◽  
Kornelia Kreiser ◽  
Bernhard Hemmer ◽  
Rüdiger Ilg

We report the case of a 42-year-old woman with a slowly progressive cerebellar syndrome. In contrast to a relatively mild clinical presentation, the magnetic resonance imaging (MRI) showed extensive leukencephalopathy with cystic degeneration. Initially primary progressive multiple sclerosis (PPMS) was suspected. Additional diffusion-weighted imaging revealed restricted diffusion in the white matter lesions with a reduced apparent diffusion coefficient. Genetic testing showed vanishing white matter disease (VWM) with c.260C>T EIF2B3 mutation. In conclusion, in cases with relatively mild symptoms and extensive white matter lesions, adult-onset VWM should be considered as differential diagnosis of PPMS and diffusion-weighted imaging may be helpful to identify suspected cases.


2019 ◽  
Vol 6 (5) ◽  
pp. 854-862 ◽  
Author(s):  
Ajai Tripathi ◽  
Christina Volsko ◽  
Ushasi Datta ◽  
Keren Regev ◽  
Ranjan Dutta

1999 ◽  
Vol 5 (5) ◽  
pp. 313-316 ◽  
Author(s):  
S M Leary ◽  
N C Silver ◽  
V L Stevenson ◽  
G J Barker ◽  
D H Miller ◽  
...  

Patients with primary progressive multiple sclerosis may develop severe disability despite a paucity of lesions on conventional magnetic resonance imaging, raising the possibility that intrinsic changes in normal appearing white matter (NAWM) contribute to disability. This study has measured magnetisation transfer ratio (MTR), an index of tissue damage, of NAWM in 52 patients with primary progressive multiple sclerosis and 26 healthy controls. Absolute values of MTR were obtained from the genu of the corpus callosum and pons, and mean values were calculated from bilateral regions in the centrum semiovale, frontal white matter, parieto-occipital white matter and posterior limb of the internal capsule. The median MTR was lower in all regions in patients compared to controls. Median values (per cent units) were significantly lower in corpus callosum (39.73 vs 40.63; P=0.01), frontal white matter (39.11 vs 39.59; P=0.01) and centrum semiovale (37.21 vs 37.82; P50.05). This study has demonstrated small but widespread decreases in MTR in NAWM in primary progressive multiple sclerosis supporting the hypothesis that there are intrinsic changes in NAWM which may contribute to disability in this patient group.


2020 ◽  
Author(s):  
Pavel Filip ◽  
Michal Dufek ◽  
Silvia Mangia ◽  
Shalom Michaeli ◽  
Martin Bares ◽  
...  

Abstract Background: The research of primary progressive multiple sclerosis (PPMS) has not been able to capitalize on recent progresses in advanced MRI protocols searching for disease-specific microstructural changes. Methods: Conventional free precession T1 and T2, and rotating frame adiabatic T1ρ and T2ρ maps in combination with diffusion weighted parameters were acquired in 13 PPMS patients and 13 age and sex-matched controls.Results: T1ρ, a marker of crucial relevance for PPMS due to its sensitivity to neuronal loss, revealed large-scale changes in mesiotemporal structures, sensorimotor cortex and cingulate, in combination with diffuse alterations in the white matter and cerebellum. T2ρ, particularly sensitive to local tissue background gradients and thus indicator of iron accumulation, concurred with similar topography of damage, but of lower extent. Moreover, these adiabatic protocols completely dwarfed the outcomes of both conventional T1 and T2 maps and diffusion tensor/kurtosis approaches –methods previously implicated in the MRI research of PPMS.Conclusion: This study introduces adiabatic T1ρ and T2ρ as elegant markers confirming large-scale cortical grey matter, cerebellar and white matter alterations in PPMS invisible to other in vivo biomarkers.


Brain ◽  
2020 ◽  
Vol 143 (10) ◽  
pp. 2973-2987 ◽  
Author(s):  
Russell Ouellette ◽  
Constantina A Treaba ◽  
Tobias Granberg ◽  
Elena Herranz ◽  
Valeria Barletta ◽  
...  

Abstract We used 7 T MRI to: (i) characterize the grey and white matter pathology in the cervical spinal cord of patients with early relapsing-remitting and secondary progressive multiple sclerosis; (ii) assess the spinal cord lesion spatial distribution and the hypothesis of an outside-in pathological process possibly driven by CSF-mediated immune cytotoxic factors; and (iii) evaluate the association of spinal cord pathology with brain burden and its contribution to neurological disability. We prospectively recruited 20 relapsing-remitting, 15 secondary progressive multiple sclerosis participants and 11 age-matched healthy control subjects to undergo 7 T imaging of the cervical spinal cord and brain as well as conventional 3 T brain acquisition. Cervical spinal cord imaging at 7 T was used to segment grey and white matter, including lesions therein. Brain imaging at 7 T was used to segment cortical and white matter lesions and 3 T imaging for cortical thickness estimation. Cervical spinal cord lesions were mapped voxel-wise as a function of distance from the inner central canal CSF pool to the outer subpial surface. Similarly, brain white matter lesions were mapped voxel-wise as a function of distance from the ventricular system. Subjects with relapsing-remitting multiple sclerosis showed a greater predominance of spinal cord lesions nearer the outer subpial surface compared to secondary progressive cases. Inversely, secondary progressive participants presented with more centrally located lesions. Within the brain, there was a strong gradient of lesion formation nearest the ventricular system that was most evident in participants with secondary progressive multiple sclerosis. Lesion fractions within the spinal cord grey and white matter were related to the lesion fraction in cerebral white matter. Cortical thinning was the primary determinant of the Expanded Disability Status Scale, white matter lesion fractions in the spinal cord and brain of the 9-Hole Peg Test and cortical thickness and spinal cord grey matter cross-sectional area of the Timed 25-Foot Walk. Spinal cord lesions were localized nearest the subpial surfaces for those with relapsing-remitting and the central canal CSF surface in progressive disease, possibly implying CSF-mediated pathogenic mechanisms in lesion development that may differ between multiple sclerosis subtypes. These findings show that spinal cord lesions involve both grey and white matter from the early multiple sclerosis stages and occur mostly independent from brain pathology. Despite the prevalence of cervical spinal cord lesions and atrophy, brain pathology seems more strongly related to physical disability as measured by the Expanded Disability Status Scale.


Brain ◽  
2020 ◽  
Vol 143 (7) ◽  
pp. 2073-2088 ◽  
Author(s):  
Katharina Jäckle ◽  
Thomas Zeis ◽  
Nicole Schaeren-Wiemers ◽  
Andreas Junker ◽  
Franziska van der Meer ◽  
...  

Abstract Multiple sclerosis is an immune-mediated chronic inflammatory disease of the CNS that leads to demyelinated lesions in the grey and white matter. Inflammatory, active demyelinating white matter lesions predominate in the relapsing-remitting disease stages, whereas in the progressive stage the so-called slowly expanding lesion is characteristic. These lesions show an accumulation of macrophages/microglia at their borders, mediating the ongoing myelin breakdown and axonal degeneration. The exact pathogenetic mechanisms of lesion progression in chronic multiple sclerosis are still not clear. In the present study, we performed a detailed immunological and molecular profiling of slowly expanding lesions (n = 21) from 13 patients aged between 30 to 74 years (five females and eight males), focusing on macrophage/microglia differentiation. By applying the microglia-specific marker TMEM119, we demonstrate that cells accumulating at the lesion edge almost exclusively belonged to the microglia lineage. Macrophages/microglia can be subdivided into the M1 type, which are associated with inflammatory and degenerative processes, and M2 type, with protective properties, whereby also intermediate polarization phenotypes can be observed. By using a panel of markers characterizing M1- or M2-type macrophages/microglia, we observed a preferential accumulation of M1-type differentiated cells at the lesion edge, indicating a crucial role of these cells in lesion progression. Additionally, unbiased RNA microarray analyses of macrodissected lesion edges from slowly expanding and chronic inactive lesions as well as normal-appearing white matter were performed. In slowly expanding lesions, we identified a total of 165 genes that were upregulated and 35 genes that were downregulated. The upregulated genes included macrophage/microglia-associated genes involved in immune defence and inflammatory processes. Among the upregulated genes were ALOX15B, MME and TNFRSF25. We confirmed increased expression of ALOX15B by quantitative PCR, and of all three genes on the protein level by immunohistochemistry. In conclusion, the present study characterized in detail slowly expanding lesions in progressive multiple sclerosis and demonstrated a preferential accumulation of resident microglia with M1 differentiation at the lesion edge. Microarray analysis showed an increased expression of genes related to immune function, metabolic processes as well as transcription/translation. Thus, these genes may serve as future therapeutic targets to impede lesion progression.


2020 ◽  
pp. 135245852091897 ◽  
Author(s):  
Svenja Kiljan ◽  
Paolo Preziosa ◽  
Laura E Jonkman ◽  
Wilma DJ van de Berg ◽  
Jos Twisk ◽  
...  

Background: Neuroaxonal degeneration is one of the hallmarks of clinical deterioration in progressive multiple sclerosis (PMS). Objective: To elucidate the association between neuroaxonal degeneration and both local cortical and connected white matter (WM) tract pathology in PMS. Methods: Post-mortem in situ 3T magnetic resonance imaging (MRI) and cortical tissue blocks were collected from 16 PMS donors and 10 controls. Cortical neuroaxonal, myelin, and microglia densities were quantified histopathologically. From diffusion tensor MRI, fractional anisotropy, axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were quantified in normal-appearing white matter (NAWM) and white matter lesions (WML) of WM tracts connected to dissected cortical regions. Between-group differences and within-group associations were investigated through linear mixed models. Results: The PMS donors displayed significant axonal loss in both demyelinated and normal-appearing (NA) cortices ( p < 0.001 and p = 0.02) compared with controls. In PMS, cortical axonal density was associated with WML MD and AD ( p = 0.003; p = 0.02, respectively), and NAWM MD and AD ( p = 0.04; p = 0.049, respectively). NAWM AD and WML AD explained 12.6% and 22.6%, respectively, of axonal density variance in NA cortex. Additional axonal loss in demyelinated cortex was associated with cortical demyelination severity ( p = 0.002), explaining 34.4% of axonal loss variance. Conclusion: Reduced integrity of connected WM tracts and cortical demyelination both contribute to cortical axonal loss in PMS.


Sign in / Sign up

Export Citation Format

Share Document