centrum semiovale
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 13 ◽  
Author(s):  
Martin Klietz ◽  
M. Handan Elaman ◽  
Nima Mahmoudi ◽  
Patrick Nösel ◽  
Mareike Ahlswede ◽  
...  

Objective: Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elderly. In early stages of PD, patients typically display normal brain magnet resonance imaging (MRI) in routine screening. Advanced imaging approaches are necessary to discriminate early PD patients from healthy controls. In this study, microstructural changes in relevant brain regions of early PD patients were investigated by using quantitative MRI methods.Methods: Cerebral MRI at 3T was performed on 20 PD patients in early stages and 20 age and sex matched healthy controls. Brain relative proton density, T1, T2, and T2′ relaxation times were measured in 14 regions of interest (ROIs) in each hemisphere and compared between patients and controls to estimate PD related alterations.Results: In comparison to matched healthy controls, the PD patients revealed decreased relative proton density in contralateral prefrontal subcortical area, upper and lower pons, in ipsilateral globus pallidus, and bilaterally in splenium corporis callosi, caudate nucleus, putamen, thalamus, and mesencephalon. The T1 relaxation time was increased in contralateral prefrontal subcortical area and centrum semiovale, putamen, nucleus caudatus and mesencephalon, whereas T2 relaxation time was elevated in upper pons bilaterally and in centrum semiovale ipsilaterally. T2′ relaxation time did not show significant changes.Conclusion: Early Parkinson’s disease is associated with a distinct profile of brain microstructural changes which may relate to clinical symptoms. The quantitative MR method used in this study may be useful in early diagnosis of Parkinson’s disease. Limitations of this study include a small sample size and manual selection of the ROIs. Atlas-based or statistical mapping methods would be an alternative for an objective evaluation. More studies are necessary to validate the measurement methods for clinical use in diagnostics of early Parkinson’s disease.


2021 ◽  
pp. 0271678X2110381
Author(s):  
Kemeng Zhang ◽  
Ying Zhou ◽  
Wenhua Zhang ◽  
Qingqing Li ◽  
Jianzhong Sun ◽  
...  

Our purpose is to assess the role of deep medullary veins (DMVs) in pathogenesis of MRI-visible perivascular spaces (PVS) in patients with cerebral small vessel disease (cSVD). Consecutive patients recruited in the CIRCLE study (ClinicalTrials.gov ID: NCT03542734) were included. Susceptibility Weighted Imaging-Phase images were used to evaluate DMVs based on a brain region-based visual score. T2 weighted images were used to evaluate PVS based on the five-point score, and PVS in basal ganglia (BG-PVS), centrum semiovale (CSO-PVS) and hippocampus (H-PVS) were evaluated separately. 270 patients were included. The severity of BG-PVS, CSO-PVS and H-PVS was positively related to the increment of age (all p < 0.05). The severity of BG-PVS and H-PVS was positively related to DMVs score (both p < 0.05). Patients with more severe BG-PVS had higher Fazekas scores in both periventricle and deep white matter (both p < 0.001) and higher frequency of hypertension ( p = 0.008). Patients with more severe H-PVS had higher frequency of diabetes ( p < 0.001). Besides, high DMVs score was an independent risk factor for more severe BG-PVS ( β = 0.204, p = 0.001). Our results suggested that DMVs disruption might be involved in the pathogenesis of BG-PVS.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 825
Author(s):  
Iacopo Ciampa ◽  
Grégory Operto ◽  
Carles Falcon ◽  
Carolina Minguillon ◽  
Manuel Castro de Moura ◽  
...  

This study investigated whether genetic factors involved in Alzheimer’s disease (AD) are associated with enlargement of Perivascular Spaces (ePVS) in the brain. A total of 680 participants with T2-weighted MRI scans and genetic information were acquired from the ALFA study. ePVS in the basal ganglia (BG) and the centrum semiovale (CS) were assessed based on a validated visual rating scale. We used univariate and multivariate logistic regression models to investigate associations between ePVS in BG and CS with BIN1-rs744373, as well as APOE genotypes. We found a significant association of the BIN1-rs744373 polymorphism in the CS subscale (p value = 0.019; OR = 2.564), suggesting that G allele carriers have an increased risk of ePVS in comparison with A allele carriers. In stratified analysis by APOE-ε4 status (carriers vs. non-carriers), these results remained significant only for ε4 carriers (p value = 0.011; OR = 1.429). To our knowledge, the present study is the first suggesting that genetic predisposition for AD is associated with ePVS in CS. These findings provide evidence that underlying biological processes affecting AD may influence CS-ePVS.


2021 ◽  
Vol 12 ◽  
Author(s):  
S. Andrea Wijtenburg ◽  
Min Wang ◽  
Stephanie A. Korenic ◽  
Shuo Chen ◽  
Peter B. Barker ◽  
...  

Proton magnetic resonance spectroscopy (MRS) studies in schizophrenia have shown altered GABAergic, glutamatergic, and bioenergetic pathways, but if these abnormalities are brain region or illness-stage specific is largely unknown. MRS at 7T MR enables reliable quantification of multiple metabolites, including GABA, glutamate (Glu) and glutamine (Gln), from multiple brain regions within the time constraints of a clinical examination. In this study, GABA, Glu, Gln, the ratio Gln/Glu, and lactate (Lac) were quantified using 7T MRS in five brain regions in adults with schizophrenia (N = 40), first-degree relatives (N = 11), and healthy controls (N = 38). Metabolites were analyzed for differences between groups, as well as between subjects with schizophrenia with either short (&lt;5 years, N = 19 or long (&gt;5 years, N = 21) illness duration. For analyses between the three groups, there were significant glutamatergic and GABAergic differences observed in the anterior cingulate, centrum semiovale, and dorsolateral prefrontal cortex. There were also significant relationships between anterior cingulate cortex, centrum semiovale, and dorsolateral prefrontal cortex and cognitive measures. There were also significant glutamatergic, GABAergic, and lactate differences between subjects with long and short illness duration in the anterior cingulate, centrum semiovale, dorsolateral prefrontal cortex, and hippocampus. Finally, negative symptom severity ratings were significantly correlated with both anterior cingulate and centrum semiovale metabolite levels. In summary, 7T MRS shows multi-region differences in GABAergic and glutamatergic metabolites between subjects with schizophrenia, first-degree relatives and healthy controls, suggesting relatively diffuse involvement that evolves with illness duration. Unmedicated first-degree relatives share some of the same metabolic characteristics as patients with a diagnosis of schizophrenia, suggesting that these differences may reflect a genetic vulnerability and are not solely due to the effects of antipsychotic interventions.


Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Robert J. Witte ◽  
Norbert G. Campeau ◽  
Kiaran P. McGee ◽  
...  

Abstract Purpose MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate the clinical application of this technique in patients with meningioma. Materials and methods A whole-brain 3D isotropic 1mm3 acquisition under a 3.0T field strength was used to obtain MRF T1 and T2-based relaxometry values in 4:38 s. The accuracy of values was quantified by scanning a quantitative MR relaxometry phantom. In vivo evaluation was performed by applying the sequence to 20 subjects with 25 meningiomas. Regions of interest included the meningioma, caudate head, centrum semiovale, contralateral white matter and thalamus. For both phantom and subjects, mean values of both T1 and T2 estimates were obtained. Statistical significance of differences in mean values between the meningioma and other brain structures was tested using a Friedman’s ANOVA test. Results MR fingerprinting phantom data demonstrated a linear relationship between measured and reference relaxometry estimates for both T1 (r2 = 0.99) and T2 (r2 = 0.97). MRF T1 relaxation times were longer in meningioma (mean ± SD 1429 ± 202 ms) compared to thalamus (mean ± SD 1054 ± 58 ms; p = 0.004), centrum semiovale (mean ± SD 825 ± 42 ms; p < 0.001) and contralateral white matter (mean ± SD 799 ± 40 ms; p < 0.001). MRF T2 relaxation times were longer for meningioma (mean ± SD 69 ± 27 ms) as compared to thalamus (mean ± SD 27 ± 3 ms; p < 0.001), caudate head (mean ± SD 39 ± 5 ms; p < 0.001) and contralateral white matter (mean ± SD 35 ± 4 ms; p < 0.001) Conclusions Phantom measurements indicate that the proposed 3D-MRF sequence relaxometry estimations are valid and reproducible. For in vivo, entire brain coverage was obtained in clinically feasible time and allows quantitative assessment of meningioma in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document