scholarly journals Interchange between X- and Y-Chromosomes in Attached X Females of Drosophila Melanogaster

1933 ◽  
Vol 19 (9) ◽  
pp. 830-838 ◽  
Author(s):  
B. P. Kaufmann
Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 617-624 ◽  
Author(s):  
S M Williams ◽  
J A Kennison ◽  
L G Robbins ◽  
C Strobeck

Abstract The role of reciprocal recombination in the coevolution of the ribosomal RNA gene family on the X and Y chromosomes of Drosophila melanogaster was assessed by determining the frequency and nature of such exchange. In order to detect exchange events within the ribosomal RNA gene family, both flanking markers and restriction fragment length polymorphisms within the tandemly repeated gene family were used. The vast majority of crossovers between flanking markers were within the ribosomal RNA gene region, indicating that this region is a hotspot for heterochromatic recombination. The frequency of crossovers within the ribosomal RNA gene region was approximately 10(-4) in both X/X and X/Y individuals. In conjunction with published X chromosome-specific and Y chromosome-specific sequences and restriction patterns, the data indicate that reciprocal recombination alone cannot be responsible for the observed variation in natural populations.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 243-256 ◽  
Author(s):  
Carlos Polanco ◽  
Ana I González ◽  
Álvaro de la Fuente ◽  
Gabriel A Dover

Abstract The multigene family of rDNA in Drosophila reveals high levels of within-species homogeneity and between-species diversity. This pattern of mutation distribution is known as concerted evolution and is considered to be due to a variety of genomic mechanisms of turnover (e.g., unequal crossing over and gene conversion) that underpin the process of molecular drive. The dynamics of spread of mutant repeats through a gene family, and ultimately through a sexual population, depends on the differences in rates of turnover within and between chromosomes. Our extensive molecular analysis of the intergenic spacer (IGS) and internal transcribed spacer (ITS) spacer regions within repetitive rDNA units, drawn from the same individuals in 10 natural populations of Drosophila melanogaster collected along a latitudinal cline on the east coast of Australia, indicates a relatively fast rate of X-Y and X-X interchromosomal exchanges of IGS length variants in agreement with a multilineage model of homogenization. In contrast, an X chromosome-restricted 24-bp deletion in the ITS spacers is indicative of the absence of X-Y chromosome exchanges for this region that is part of the same repetitive rDNA units. Hence, a single lineage model of homogenization, coupled to drift and/or selection, seems to be responsible for ITS concerted evolution. A single-stranded exchange mechanism is proposed to resolve this paradox, based on the role of the IGS region in meiotic pairing between X and Y chromosomes in D. melanogaster.


1986 ◽  
Vol 6 (4) ◽  
pp. 1023-1031
Author(s):  
R Terracol ◽  
N Prud'homme

In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus.


1986 ◽  
Vol 6 (4) ◽  
pp. 1023-1031 ◽  
Author(s):  
R Terracol ◽  
N Prud'homme

In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus.


Genetics ◽  
1981 ◽  
Vol 99 (1) ◽  
pp. 49-64
Author(s):  
Rezaur Rahman ◽  
Dan L Lindsley

ABSTRACT The genetic limits of sixty-four deficiencies in the vicinity of the euchromatic-heterochromatic junction of the X chromosome were mapped with respect to a number of proximal recessive lethal mutations. They were also tested for male fertility in combination with three Y chromosomes carrying different amounts of proximal X-chromosome-derived material (BSYy+, y+Ymal126 and y  +  Ymal  +). All deficiencies that did not include the locus of bb and a few that did were male-fertile in all male-viable Df(1)/Dp(1;Y) combinations. Nineteen bb deficiencies fell into six different classes by virtue of their male-fertility phenotypes when combined with the duplicated Y chromosomes. The six categories of deficiencies are consistent with a formalism that invokes three factors or regions at the base of the X, one distal and two proximal to bb, which bind a substance critical for precocious inactivation of the X chromosome in the primary spermatocyte. Free duplications carrying these regions or factors compete for the substance in such a way that, in the presence of such duplications, proximally deficient X chromosomes are unable to command sufficient substance for proper control of X-chromosome gene activity preparatory to spermatogenesis. We conclude that there is no single factor at the base of the X that is required for the fertility of males whose genotype is otherwise normal.


Genetics ◽  
1960 ◽  
Vol 45 (12) ◽  
pp. 1705-1722 ◽  
Author(s):  
Benedetto Nicoletti ◽  
Dan L Lindsley

Genetics ◽  
1987 ◽  
Vol 115 (1) ◽  
pp. 143-151
Author(s):  
Andrew G Clark

ABSTRACT Functional variation among Y chromosomes in natural populations of Drosophila melanogaster was assayed by a segregation study. A total of 36 Y chromosomes was extracted and ten generations of replacement backcrossing yielded stocks with Y chromosomes in two different genetic backgrounds. Eleven of the Y chromosomes were from diverse geographic origins, and the remaining 25 were from locally captured flies. Segregation of sexes in adult offspring was scored for the four possible crosses among the two backgrounds with each Y chromosome. Although the design confounds meiotic drive and effects on viability, statistical partitioning of these effects reveals significant variation among lines in Y chromosome segregation. Results are discussed in regards to models of Y-linked segregation and viability effects, which suggest that Y-linked adaptive polymorphism is unlikely.


Genetics ◽  
1982 ◽  
Vol 100 (3) ◽  
pp. 375-385 ◽  
Author(s):  
Sharyn A Endow

ABSTRACT It has previously been shown (Endow and Glover 1979), that polytenization of the ribosomal genes in D. melanogaster Ore-R X/Y cells and in hybrid X/X cells (Endow 1980) involves replication of genes predominantly from one of the cell's two nucleolus organizers. This analysis takes advantage of strain-specific differences in X and Y chromosome rDNA hybridization patterns detected using the Southern blotting technique. In this report, I extend the previous observations by examining polytene rDNA patterns in wild-type and hybrid X/Y cells. A dominance hierarchy for the X and Y chromosomes from three strains of D. melanogaster is presented and possible mechanisms of replicative dominance are discussed.


Sign in / Sign up

Export Citation Format

Share Document