scholarly journals The frequency-domain infrared spectrum of ammonia encodes changes in molecular dynamics caused by a DC electric field

2019 ◽  
Vol 116 (47) ◽  
pp. 23444-23447 ◽  
Author(s):  
Youngwook Park ◽  
Hani Kang ◽  
Robert W. Field ◽  
Heon Kang

Ammonia is special. It is nonplanar, yet in v = 1 of the umbrella mode (ν2) its inversion motion is faster than J = 0↔1 rotation. Does the simplicity of the Chemist's concept of an electric dipole moment survive the competition between rotation, inversion, and a strong external electric field? NH3 is a favorite pedagogical example of tunneling in a symmetric double-minimum potential. Tunneling is a dynamical concept, yet the quantitative characteristics of tunneling are expressed in a static, eigenstate-resolved spectrum. The inverting-umbrella tunneling motion in ammonia is both large amplitude and profoundly affected by an external electric field. We report how a uniquely strong (up to 108 V/m) direct current (DC) electric field causes a richly detailed sequence of reversible changes in the frequency-domain infrared spectrum (the v = 0→1 transition in the ν2 umbrella mode) of ammonia, freely rotating in a 10 K Ar matrix. Although the spectrum is static, encoded in it is the complete inter- and intramolecular picture of tunneling dynamics.

2020 ◽  
Author(s):  
Paolo Raiteri ◽  
Peter Kraus ◽  
Julian Gale

Molecular dynamics simulations of the liquid-liquid interface between water and 1,2-Dichloroethane in the presence of weak external electric fields.<div>The effect of the use of 3D periodic Ewald summation and the effect of the simulation setup are discussed.</div><div>A new simple geometric method for designing the simulation cell is proposed. This method was thoroughly tested shown that it mitigates any artefacts to the use of 3D Ewald summation with external electric field.</div>


Author(s):  
А.И. Грачев

In the paper the concept of conductive particle rotation in DC electric field with including the Lorentz force providing generation of electric dipole moment of the particle is for the first time discussed. Some models of the torque transfer to spherical and cylindrical particles based on of the Hall effect at usual geometry and with additional electric field application and also in the case of implementation of the photoelectromagnetic effect are presented.


2021 ◽  
Vol 23 (1) ◽  
pp. 597-606
Author(s):  
Victor Ponce ◽  
Diego E. Galvez-Aranda ◽  
Jorge M. Seminario

Speciation at the SEI and SSE of a solid-state nanobattery.


1981 ◽  
Vol 36 (8) ◽  
pp. 868-875 ◽  
Author(s):  
Wolfram Baumann

Abstract The effect of an external electric field on the absorption and the double fluorescence of 4-cyano-N,N-dimethylaniline can be understood, taking into account reaction field induced polarizability effects. If a TICT state conformation emits the a-fiuorescence in dioxane, the permanent dipole moment in this state is only slightly larger than in the equilibrium ground state.


2020 ◽  
Vol 11 (8) ◽  
pp. 2231-2242 ◽  
Author(s):  
Croix J. Laconsay ◽  
Ka Yi Tsui ◽  
Dean J. Tantillo

We interrogate a type of heterolytic fragmentation called a ‘divergent fragmentation’ using density functional theory (DFT), natural bond orbital (NBO) analysis, ab initio molecular dynamics (AIMD), and external electric field (EEF) calculations.


2020 ◽  
Vol 312 ◽  
pp. 113195 ◽  
Author(s):  
Fenhong Song ◽  
Hu Niu ◽  
Jing Fan ◽  
Qicheng Chen ◽  
Gang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document