A molecular dynamics study of domain switching in BiFeO3 nanofilm under DC electric field

2021 ◽  
Vol 199 ◽  
pp. 110718
Author(s):  
Hamed Nobarani ◽  
Mohsen Asle Zaeem
2020 ◽  
Vol 312 ◽  
pp. 113195 ◽  
Author(s):  
Fenhong Song ◽  
Hu Niu ◽  
Jing Fan ◽  
Qicheng Chen ◽  
Gang Wang ◽  
...  

Author(s):  
В.С. Быстров ◽  
V.S. Bystrov

In this paper, molecular models are used to investigate and analyze the polarization switching in the polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) Langmuir-Blodgett (LB) nanofilms, in comparison with the experimental data at the nanoscale. Quantum-mechanical calculations and modeling, as well as molecular dynamics (MD) simulations based on semi-empirical quantum-chemical methods (such as PM3), show that the energy of the studied PVDF and P (VDF-TrFE) molecular structures, and their polarization switching proceed by the intrinsic homogeneous switching mechanism in the framework of the phenomenological theory of Landau-Ginzburg-Devonshire (LGD) in the linear approximation at low values of the electric field. The magnitude of the resulting critical coercive field is within the EC ~ 0.5 ... 2.5 GV/m, which is consistent with experimental data. It is also found that the uniform polarization switching mechanism of the polymer chains PVDF and P (VDF-TrFE) is due to the quantum properties of the molecular orbitals of the electron subsystem. This is clearly seen in both the polarization hysteresis loops, and the total energy changes. In this case, the turnover chain time, obtained by molecular dynamics within semi-empirical quantum-chemical PM3 approach in a limited Hartree-Fock approximation, when approaching this critical point, increases sharply, tending to infinity, which corresponds to the theory of LGD. Otherwise, at the high values of the applied electric field the polarization switching correspond to the extrinsic domain mechanism in the frame of the microscopic Kolmogorov–Avrami–Ishibashi (KAI) theory, describing bulk ferroelectric crystals and thick films. The performed analysis of computational and experimental data allows us to estimate the critical sizes of the possible transition region approximately on the order of 10 nm between intrinsic homogeneous and extrinsic domain switching mechanisms.


2019 ◽  
Vol 116 (47) ◽  
pp. 23444-23447 ◽  
Author(s):  
Youngwook Park ◽  
Hani Kang ◽  
Robert W. Field ◽  
Heon Kang

Ammonia is special. It is nonplanar, yet in v = 1 of the umbrella mode (ν2) its inversion motion is faster than J = 0↔1 rotation. Does the simplicity of the Chemist's concept of an electric dipole moment survive the competition between rotation, inversion, and a strong external electric field? NH3 is a favorite pedagogical example of tunneling in a symmetric double-minimum potential. Tunneling is a dynamical concept, yet the quantitative characteristics of tunneling are expressed in a static, eigenstate-resolved spectrum. The inverting-umbrella tunneling motion in ammonia is both large amplitude and profoundly affected by an external electric field. We report how a uniquely strong (up to 108 V/m) direct current (DC) electric field causes a richly detailed sequence of reversible changes in the frequency-domain infrared spectrum (the v = 0→1 transition in the ν2 umbrella mode) of ammonia, freely rotating in a 10 K Ar matrix. Although the spectrum is static, encoded in it is the complete inter- and intramolecular picture of tunneling dynamics.


2013 ◽  
Vol 566 ◽  
pp. 3-6
Author(s):  
Motonori Nakamura ◽  
Chiharu Sakaki ◽  
Masahiko Kimura ◽  
Takehiro Konoike ◽  
Hiroshi Takagi ◽  
...  

Fatigue tests on lead zirconate titanate (PZT) were performed by using single-edge-V-notched specimens under cyclic mechanical loading with or without superposition of a DC electric field. Fatigue life was prolonged by applying a DC electric field to the PZT ceramics. To estimate the domain contribution, fatigue tests on barium strontium titanate (BST) ceramics in both ferroelectric and paraelectric phase were carried out. The fatigue life of the ferroelectric phase was much shorter than that of the paraelectric phase. Comparing the fatigue lives of two PZT ceramics with different values of coercive electric field (Ec) revealed that the fatigue life of the PZT with higher Ec is about one order of magnitude longer than that with lower Ec when the stress-intensity factor of fatigue test is low. It is therefore concluded that non-180°domain switching probably deteriorates the fatigue life of ferroelectric ceramics.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64 ◽  
Author(s):  
Qin Wang ◽  
Hui Xie ◽  
Zhiming Hu ◽  
Chao Liu

In this study, molecular dynamics simulations were carried out to study the coupling effect of electric field strength and surface wettability on the condensation process of water vapor. Our results show that an electric field can rotate water molecules upward and restrict condensation. Formed clusters are stretched to become columns above the threshold strength of the field, causing the condensation rate to drop quickly. The enhancement of surface attraction force boosts the rearrangement of water molecules adjacent to the surface and exaggerates the threshold value for shape transformation. In addition, the contact area between clusters and the surface increases with increasing amounts of surface attraction force, which raises the condensation efficiency. Thus, the condensation rate of water vapor on a surface under an electric field is determined by competition between intermolecular forces from the electric field and the surface.


1990 ◽  
Vol 68 (8) ◽  
pp. 3865-3871 ◽  
Author(s):  
Jian‐chun Cheng ◽  
Shu‐yi Zhang ◽  
Yue‐sheng Lu

Sign in / Sign up

Export Citation Format

Share Document