scholarly journals Experimental realization of a reconfigurable electroacoustic topological insulator

2020 ◽  
Vol 117 (28) ◽  
pp. 16138-16142 ◽  
Author(s):  
Amir Darabi ◽  
Manuel Collet ◽  
Michael J. Leamy

A substantial challenge in guiding elastic waves is the presence of reflection and scattering at sharp edges, defects, and disorder. Recently, mechanical topological insulators have sought to overcome this challenge by supporting back-scattering resistant wave transmission. In this paper, we propose and experimentally demonstrate a reconfigurable electroacoustic topological insulator exhibiting an analog to the quantum valley Hall effect (QVHE). Using programmable switches, this phononic structure allows for rapid reconfiguration of domain walls and thus the ability to control back-scattering resistant wave propagation along dynamic interfaces for phonons lying in static and finite-frequency regimes. Accordingly, a graphene-like polyactic acid (PLA) layer serves as the host medium, equipped with periodically arranged and bonded piezoelectric (PZT) patches, resulting in two Dirac cones at theKpoints. The PZT patches are then connected to negative capacitance external circuits to break inversion symmetry and create nontrivial topologically protected bandgaps. As such, topologically protected interface waves are demonstrated numerically and validated experimentally for different predefined trajectories over a broad frequency range.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicodemos Varnava ◽  
Justin H. Wilson ◽  
J. H. Pixley ◽  
David Vanderbilt

AbstractEngineering and manipulation of unidirectional channels has been achieved in quantum Hall systems, leading to the construction of electron interferometers and proposals for low-power electronics and quantum information science applications. However, to fully control the mixing and interference of edge-state wave functions, one needs stable and tunable junctions. Encouraged by recent material candidates, here we propose to achieve this using an antiferromagnetic topological insulator that supports two distinct types of gapless unidirectional channels, one from antiferromagnetic domain walls and the other from single-height steps. Their distinct geometric nature allows them to intersect robustly to form quantum point junctions, which then enables their control by magnetic and electrostatic local probes. We show how the existence of stable and tunable junctions, the intrinsic magnetism and the potential for higher-temperature performance make antiferromagnetic topological insulators a promising platform for electron quantum optics and microelectronic applications.


1977 ◽  
Vol 67 (5) ◽  
pp. 1249-1258
Author(s):  
Douglas C. Nyman ◽  
Harsh K. Gupta ◽  
Mark Landisman

abstract The well-known relationship between group velocity and phase velocity, 1/u = d/dω (ω/c), is adapted to the practical situation of discrete observations over a finite frequency range. The transformation of one quantity into the other is achieved in two steps: a low-order polynomial accounts for the dominant trends; the derivative/integral of the residual is evaluated by Fourier analysis. For observations of both group velocity and phase velocity, the requirement that they be mutually consistent can reduce observational errors. The method is also applicable to observations of eigenfrequency and group velocity as functions of normal-mode angular order.


2019 ◽  
Vol 14 (02) ◽  
pp. 2050006
Author(s):  
Ia Shengelia ◽  
Nato Jorjiashvili ◽  
Tea Godoladze ◽  
Zurab Javakhishvili ◽  
Nino Tumanova

Three hundred and thirty-five local earthquakes were processed and the attenuation properties of the crust in the Racha region were investigated using the records of seven seismic stations. We have estimated the quality factors of coda waves ([Formula: see text]) and the direct [Formula: see text] waves ([Formula: see text]) by the single back scattering model and the coda normalization methods, respectively. The Wennerberg’s method has been used to estimate relative contribution of intrinsic ([Formula: see text]) and scattering ([Formula: see text]) attenuations in the total attenuation. We have found that [Formula: see text] and [Formula: see text] parameters are frequency-dependent in the frequency range of 1.5–24[Formula: see text]Hz. [Formula: see text] values increase both with respect to lapse time window from 20[Formula: see text]s to 60[Formula: see text]s and frequency. [Formula: see text] and [Formula: see text] parameters are nearly similar for all frequency bands, but are smaller than [Formula: see text]. The obtained results show that the intrinsic attenuation has more significant effect than scattering attenuation in the total attenuation. The increase of [Formula: see text] with lapse time shows that the lithosphere becomes more homogeneous with depth.


2021 ◽  
Author(s):  
Qinghua Guo ◽  
Tianshu Jiang ◽  
Ruoyang Zhang ◽  
Zhaoqing Zhang ◽  
Biao Yang ◽  
...  

2019 ◽  
Vol 146 (1) ◽  
pp. 773-781 ◽  
Author(s):  
Amir Darabi ◽  
Michael J. Leamy

2019 ◽  
Vol 148 ◽  
pp. 485-494 ◽  
Author(s):  
A. EL-AMRANI ◽  
I. BOUMHIDI ◽  
B. BOUKILI ◽  
A. HMAMED

Sign in / Sign up

Export Citation Format

Share Document