scholarly journals A pheromone antagonist liberates female sea lamprey from a sensory trap to enable reliable communication

2020 ◽  
Vol 117 (13) ◽  
pp. 7284-7289 ◽  
Author(s):  
Tyler J. Buchinger ◽  
Anne M. Scott ◽  
Skye D. Fissette ◽  
Cory O. Brant ◽  
Mar Huertas ◽  
...  

The evolution of male signals and female preferences remains a central question in the study of animal communication. The sensory trap model suggests males evolve signals that mimic cues used in nonsexual contexts and thus manipulate female behavior to generate mating opportunities. Much evidence supports the sensory trap model, but how females glean reliable information from both mimetic signals and their model cues remains unknown. We discovered a mechanism whereby a manipulative male signal guides reliable communication in sea lamprey (Petromyzon marinus). Migratory sea lamprey follow a larval cue into spawning streams; once sexually mature, males release a pheromone that mimics the larval cue and attracts females. Females conceivably benefit from the mimetic pheromone during mate search but must discriminate against the model cue to avoid orienting toward larvae in nearby nursery habitats. We tested the hypothesis that spawning females respond to petromyzonol sulfate (PZS) as a behavioral antagonist to avoid attraction to the larval cue while tracking the male pheromone despite each containing attractive 3-keto petromyzonol sulfate (3kPZS). We found 1) PZS inhibited electrophysiological responses to 3kPZS and abated preferences for 3kPZS when mixed at the same or greater concentrations, 2) larvae released more PZS than 3kPZS whereas males released more 3kPZS than PZS, and 3) mixtures of 3kPZS and PZS applied at ratios measured in larval and male odorants resulted in the discrimination observed between the natural odors. Our study elucidates how communication systems that arise via deception can facilitate reliable communication.

2017 ◽  
Vol 284 (1855) ◽  
pp. 20170451 ◽  
Author(s):  
Henrik Brumm ◽  
Sue Anne Zollinger

Sophisticated vocal communication systems of birds and mammals, including human speech, are characterized by a high degree of plasticity in which signals are individually adjusted in response to changes in the environment. Here, we present, to our knowledge, the first evidence for vocal plasticity in a reptile. Like birds and mammals, tokay geckos ( Gekko gecko ) increased the duration of brief call notes in the presence of broadcast noise compared to quiet conditions, a behaviour that facilitates signal detection by receivers. By contrast, they did not adjust the amplitudes of their call syllables in noise (the Lombard effect), which is in line with the hypothesis that the Lombard effect has evolved independently in birds and mammals. However, the geckos used a different strategy to increase signal-to-noise ratios: instead of increasing the amplitude of a given call type when exposed to noise, the subjects produced more high-amplitude syllable types from their repertoire. Our findings demonstrate that reptile vocalizations are much more flexible than previously thought, including elaborate vocal plasticity that is also important for the complex signalling systems of birds and mammals. We suggest that signal detection constraints are one of the major forces driving the evolution of animal communication systems across different taxa.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10736
Author(s):  
Kaja Wierucka ◽  
Michelle D. Henley ◽  
Hannah S. Mumby

The ability to recognize conspecifics plays a pivotal role in animal communication systems. It is especially important for establishing and maintaining associations among individuals of social, long-lived species, such as elephants. While research on female elephant sociality and communication is prevalent, until recently male elephants have been considered far less social than females. This resulted in a dearth of information about their communication and recognition abilities. With new knowledge about the intricacies of the male elephant social structure come questions regarding the communication basis that allows for social bonds to be established and maintained. By analyzing the acoustic parameters of social rumbles recorded over 1.5 years from wild, mature, male African savanna elephants (Loxodonta africana) we expand current knowledge about the information encoded within these vocalizations and their potential to facilitate individual recognition. We showed that social rumbles are individually distinct and stable over time and therefore provide an acoustic basis for individual recognition. Furthermore, our results revealed that different frequency parameters contribute to individual differences of these vocalizations.


2021 ◽  
pp. jeb.229476
Author(s):  
Yu-Wen Chung-Davidson ◽  
Ugo Bussy ◽  
Skye D. Fissette ◽  
Anne M. Scott ◽  
Weiming Li

Pheromonal bile salts are important for sea lampreys (Petromyzon marinus Linnaeus) to complete their life cycle. The synthesis and release of a releaser/primer pheromone 3-keto petromyzonol sulfate (3kPZS) by spermiating males have been well characterized. 3kPZS evokes sexual behaviors in ovulatory females, induces immediate 3kPZS release in spermiating males, and elicits neuroendocrine responses in prespawning adults. Another primer pheromone released by spermiating males, 3-keto allocholic acid (3kACA), antagonizes the neuroendocrine effects of 3kPZS in prespermiating males. However, the effects of 3kACA and 3kPZS on pheromone production in prespawning adults is unclear. To understand the foundation of pheromone production, we examined sea lamprey bile salt levels at different life stages. To investigate the priming effects of 3kACA and 3kPZS, we exposed prespawning adults with vehicle or synthetic 3kACA or 3kPZS. We hypothesized that endogenous bile salt levels were life-stage and sex-dependent, and differentially affected by 3kACA and 3kPZS in prespawning adults. Using ultra-performance liquid chromatography tandem mass spectrometry, we found that sea lampreys contained distinct mixtures of bile salts in the liver and plasma at different life stages. Males usually contained higher amounts of bile salts than females. Petromyzonamine disulfate was the most abundant C27 bile salt and petromyzonol sulfate was the most abundant C24 bile salt. Waterborne 3kACA and 3kPZS exerted differential effects on bile salt production in the liver and gill, their circulation and clearance in the plasma, and their release into water. We conclude that bile salt levels are life-stage and sex-dependent and differentially affected by primer pheromones.


2015 ◽  
Vol 282 (1816) ◽  
pp. 20151574 ◽  
Author(s):  
Matthew R. Wilkins ◽  
Daizaburo Shizuka ◽  
Maxwell B. Joseph ◽  
Joanna K. Hubbard ◽  
Rebecca J. Safran

Complex signals, involving multiple components within and across modalities, are common in animal communication. However, decomposing complex signals into traits and their interactions remains a fundamental challenge for studies of phenotype evolution. We apply a novel phenotype network approach for studying complex signal evolution in the North American barn swallow ( Hirundo rustica erythrogaster ). We integrate model testing with correlation-based phenotype networks to infer the contributions of female mate choice and male–male competition to the evolution of barn swallow communication. Overall, the best predictors of mate choice were distinct from those for competition, while moderate functional overlap suggests males and females use some of the same traits to assess potential mates and rivals. We interpret model results in the context of a network of traits, and suggest this approach allows researchers a more nuanced view of trait clustering patterns that informs new hypotheses about the evolution of communication systems.


2001 ◽  
Vol 109 (5) ◽  
pp. 2429-2429
Author(s):  
Laurance R. Doyle ◽  
Jon M. Jenkins ◽  
Sean F. Hanser ◽  
Brenda McCowan

1998 ◽  
Vol 21 (2) ◽  
pp. 282-283
Author(s):  
Michael J. Ryan ◽  
Nicole M. Kime ◽  
Gil G. Rosenthal

We consider Sussman et al.'s suggestion that auditory biases for processing low-noise relationships among pairs of acoustic variables is a preadaptation for human speech processing. Data from other animal communication systems, especially those involving sexual selection, also suggest that neural biases in the receiver system can generate strong selection on the form of communication signals.


2016 ◽  
Vol 1 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Caleb Everett ◽  
Damián E. Blasí ◽  
Seán G. Roberts

Abstract We make the case that, contra standard assumption in linguistic theory, the sound systems of human languages are adapted to their environment. While not conclusive, this plausible case rests on several points discussed in this work: First, human behavior is generally adaptive and the assumption that this characteristic does not extend to linguistic structure is empirically unsubstantiated. Second, animal communication systems are well known to be adaptive within species across a variety of phyla and taxa. Third, research in laryngology demonstrates clearly that ambient desiccation impacts the performance of the human vocal cords. The latter point motivates a clear, testable hypothesis with respect to the synchronic global distribution of language types. Fourth, this hypothesis is supported in our own previous work, and here we discuss new approaches being developed to further explore the hypothesis. We conclude by suggesting that the time has come to more substantively examine the possibility that linguistic sound systems are adapted to their physical ecology.


2004 ◽  
Vol 12 (4) ◽  
pp. 551-565 ◽  
Author(s):  
JAMES R. HURFORD

Human language is qualitatively different from animal communication systems in at least two separate ways. Human languages contain tens of thousands of arbitrary learned symbols (mainly words). No other animal communication system involves learning the component symbolic elements afresh in each individual's lifetime, and certainly not in such vast numbers. Human language also has complex compositional syntax. The meanings of our sentences are composed from the meanings of the constituent parts (e.g. the words). This is obvious to us, but no other animal communication system (with honeybees as an odd but distracting exception) puts messages together in this way. A recent theoretical claim that the sole distinguishing feature of human language is recursion is discussed, and related to these features of learned symbols and compositional syntax. It is argued that recursive thought could have existed in prelinguistic hominids, and that the key step to language was the innovative disposition to learn massive numbers of arbitrary symbols


Sign in / Sign up

Export Citation Format

Share Document