scholarly journals Modulation of the bacterial CobB sirtuin deacylase activity by N-terminal acetylation

2020 ◽  
Vol 117 (27) ◽  
pp. 15895-15901
Author(s):  
Anastacia R. Parks ◽  
Jorge C. Escalante-Semerena

In eukaryotic cells, the N-terminal amino moiety of many proteins is modified by N-acetyltransferases (NATs). This protein modification can alter the folding of the target protein; can affect binding interactions of the target protein with substrates, allosteric effectors, or other proteins; or can trigger protein degradation. In prokaryotes, only ribosomal proteins are known to be N-terminally acetylated, and the acetyltransferases responsible for this modification belong to the Rim family of proteins. Here, we report that, inSalmonella enterica, the sirtuin deacylase CobB long isoform (CobBL) is N-terminally acetylated by the YiaC protein of this bacterium. Results of in vitro acetylation assays showed that CobBLwas acetylated by YiaC; liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to confirm these results. Results of in vitro and in vivo experiments showed that CobBLdeacetylase activity was negatively affected when YiaC acetylated its N terminus. We report 1) modulation of a bacterial sirtuin deacylase activity by acetylation, 2) that the Gcn5-related YiaC protein is the acetyltransferase that modifies CobBL, and 3) that YiaC is an NAT. Based on our data, we propose the name of NatA (N-acyltransferase A) in lieu of YiaC to reflect the function of the enzyme.

Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 462 ◽  
Author(s):  
Elisa Danese ◽  
Davide Negrini ◽  
Mairi Pucci ◽  
Simone De Nitto ◽  
Davide Ambrogi ◽  
...  

Bile acids (BA) play a pivotal role in cholesterol metabolism. Their blood concentration has also been proposed as new prognostic and diagnostic indicator of hepatobiliary, intestinal, and cardiovascular disease. Liquid chromatography tandem mass spectrometry (LC–MS/MS) currently represents the gold standard for analysis of BA profile in biological samples. We report here development and validation of a LC–MS/MS technique for simultaneously quantifying 15 BA species in serum samples. We also established a reference range for adult healthy subjects (n = 130) and performed a preliminary evaluation of in vitro and in vivo interference. The method displayed good linearity, with high regression coefficients (>0.99) over a range of 5 ng/mL (lower limit of quantification, LLOQ) and 5000 ng/mL for all analytes tested. The accuracies were between 85–115%. Both intra- and inter-assay imprecision was <10%. The recoveries ranged between 92–110%. Each of the tested BA species (assessed on three concentrations) were stable for 15 days at room temperature, 4 °C, and −20 °C. The in vitro study did not reveal any interference from triglycerides, bilirubin, or cell-free hemoglobin. The in vivo interference study showed that pools obtained from hyper-cholesterolemic patients and hyper-bilirubinemic patients due to post-hepatic jaundice for benign cholestasis, cholangiocarcinoma and pancreatic head tumors had clearly distinct patterns of BA concentrations compared with a pool obtained from samples of healthy subjects. In conclusion, this study proposes a new suitable candidate method for identification and quantitation of BA in biological samples and provides new insight into a number of variables that should be taken into account when investigating pathophysiological changes of BA in human diseases.


Sign in / Sign up

Export Citation Format

Share Document