scholarly journals A general model of hippocampal and dorsal striatal learning and decision making

2020 ◽  
Vol 117 (49) ◽  
pp. 31427-31437
Author(s):  
Jesse P. Geerts ◽  
Fabian Chersi ◽  
Kimberly L. Stachenfeld ◽  
Neil Burgess

Humans and other animals use multiple strategies for making decisions. Reinforcement-learning theory distinguishes between stimulus–response (model-free; MF) learning and deliberative (model-based; MB) planning. The spatial-navigation literature presents a parallel dichotomy between navigation strategies. In “response learning,” associated with the dorsolateral striatum (DLS), decisions are anchored to an egocentric reference frame. In “place learning,” associated with the hippocampus, decisions are anchored to an allocentric reference frame. Emerging evidence suggests that the contribution of hippocampus to place learning may also underlie its contribution to MB learning by representing relational structure in a cognitive map. Here, we introduce a computational model in which hippocampus subserves place and MB learning by learning a “successor representation” of relational structure between states; DLS implements model-free response learning by learning associations between actions and egocentric representations of landmarks; and action values from either system are weighted by the reliability of its predictions. We show that this model reproduces a range of seemingly disparate behavioral findings in spatial and nonspatial decision tasks and explains the effects of lesions to DLS and hippocampus on these tasks. Furthermore, modeling place cells as driven by boundaries explains the observation that, unlike navigation guided by landmarks, navigation guided by boundaries is robust to “blocking” by prior state–reward associations due to learned associations between place cells. Our model, originally shaped by detailed constraints in the spatial literature, successfully characterizes the hippocampal–striatal system as a general system for decision making via adaptive combination of stimulus–response learning and the use of a cognitive map.

2020 ◽  
Vol 11 ◽  
Author(s):  
Nole M. Hiebert ◽  
Marc R. Lawrence ◽  
Hooman Ganjavi ◽  
Mark Watling ◽  
Adrian M. Owen ◽  
...  

NeuroImage ◽  
2014 ◽  
Vol 101 ◽  
pp. 448-457 ◽  
Author(s):  
Nole M. Hiebert ◽  
Andrew Vo ◽  
Adam Hampshire ◽  
Adrian M. Owen ◽  
Ken N. Seergobin ◽  
...  

2017 ◽  
Vol 38 (12) ◽  
pp. 6133-6156 ◽  
Author(s):  
Nole M. Hiebert ◽  
Adrian M. Owen ◽  
Ken N. Seergobin ◽  
Penny A. MacDonald

1956 ◽  
Vol 2 (7) ◽  
pp. 401
Author(s):  
ANTHONY DAVIDS

2016 ◽  
Vol 113 (31) ◽  
pp. E4531-E4540 ◽  
Author(s):  
Braden A. Purcell ◽  
Roozbeh Kiani

Decision-making in a natural environment depends on a hierarchy of interacting decision processes. A high-level strategy guides ongoing choices, and the outcomes of those choices determine whether or not the strategy should change. When the right decision strategy is uncertain, as in most natural settings, feedback becomes ambiguous because negative outcomes may be due to limited information or bad strategy. Disambiguating the cause of feedback requires active inference and is key to updating the strategy. We hypothesize that the expected accuracy of a choice plays a crucial rule in this inference, and setting the strategy depends on integration of outcome and expectations across choices. We test this hypothesis with a task in which subjects report the net direction of random dot kinematograms with varying difficulty while the correct stimulus−response association undergoes invisible and unpredictable switches every few trials. We show that subjects treat negative feedback as evidence for a switch but weigh it with their expected accuracy. Subjects accumulate switch evidence (in units of log-likelihood ratio) across trials and update their response strategy when accumulated evidence reaches a bound. A computational framework based on these principles quantitatively explains all aspects of the behavior, providing a plausible neural mechanism for the implementation of hierarchical multiscale decision processes. We suggest that a similar neural computation—bounded accumulation of evidence—underlies both the choice and switches in the strategy that govern the choice, and that expected accuracy of a choice represents a key link between the levels of the decision-making hierarchy.


Open Biology ◽  
2016 ◽  
Vol 6 (12) ◽  
pp. 160229 ◽  
Author(s):  
E. Axel Gorostiza ◽  
Julien Colomb ◽  
Björn Brembs

Like a moth into the flame—phototaxis is an iconic example for innate preferences. Such preferences probably reflect evolutionary adaptations to predictable situations and have traditionally been conceptualized as hard-wired stimulus–response links. Perhaps for that reason, the century-old discovery of flexibility in Drosophila phototaxis has received little attention. Here, we report that across several different behavioural tests, light/dark preference tested in walking is dependent on various aspects of flight. If we temporarily compromise flying ability, walking photopreference reverses concomitantly. Neuronal activity in circuits expressing dopamine and octopamine, respectively, plays a differential role in photopreference, suggesting a potential involvement of these biogenic amines in this case of behavioural flexibility. We conclude that flies monitor their ability to fly, and that flying ability exerts a fundamental effect on action selection in Drosophila . This work suggests that even behaviours which appear simple and hard-wired comprise a value-driven decision-making stage, negotiating the external situation with the animal's internal state, before an action is selected.


2011 ◽  
Vol 204-210 ◽  
pp. 2098-2102 ◽  
Author(s):  
Ying Hong Zhong ◽  
Hong Wei Liu

In turbulent business environment, executives’ cognition plays an important role in their understanding and the process of decision making. Cognitive map helps the senior executives in their thought process. The construction of information-based cognitive map, however, is a wicked problem, which could hardly be tackled by hard systems methodologies. Design science provides a good solution. This paper puts forward a research methodology, which is divided into six activities, to build up an information systems (IS) based cognitive map for cognitive decision support. The methodology is demonstrated by a case study of a Chinese steel company’s strategic decision making.


2016 ◽  
Vol 8 (4) ◽  
pp. 87 ◽  
Author(s):  
Nagasimha Balakrishna Kanagal

<p>The stimulus response model of consumer behaviour is useful to understand the buying behaviour of individual consumers in the context of individuals buying consumer products. An extended stimulus-response model of behavioural processes in consumer decision making is proposed that serves to integrate the influences and interlinkages of buyer psychology, various buyer characteristics, and the impact of the buyer decision process on consumer decision making. The model proposes that the behavioural process of consumer decision making be as a result of the interaction of three aspects of individual buyer behaviour: communication sensitivity; enculturated individuality; and rational / economic decision making. The paper addresses the flip side of the consumer decision making process in terms of the five stages of decision making from need recognition to post-purchase satisfaction. An aggregate level framework of behavioural process in consumer decision making has been provided, that could lead to a richer analysis of micro level factors and relationships influencing consumer decision behaviour.</p>


Sign in / Sign up

Export Citation Format

Share Document