scholarly journals Membrane potential changes during mitogenic stimulation of mouse spleen lymphocytes

1980 ◽  
Vol 77 (4) ◽  
pp. 2200-2204 ◽  
Author(s):  
H. Kiefer ◽  
A. J. Blume ◽  
H. R. Kaback
Life Sciences ◽  
1997 ◽  
Vol 60 (19) ◽  
pp. 1709-1717 ◽  
Author(s):  
Cristina Sánchez ◽  
Guillermo Velasco ◽  
Manuel Guzmán

Author(s):  
Cuilin Cheng ◽  
Zhenyu Wang ◽  
Haitian Zhao ◽  
Aiju Hou ◽  
Rongchun Wang ◽  
...  

1987 ◽  
Vol 89 (2) ◽  
pp. 185-213 ◽  
Author(s):  
S Grinstein ◽  
S Cohen

The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equivalent) uptake in response to membrane hyperpolarization since: it was enhanced by pretreatment with conductive protonophores, it could be mimicked by valinomycin, and it was decreased by depolarization with K+ or gramicidin. In addition, activation of metabolic H+ production also contributes to the acidification. The alkalinization is due to Na+/H+ exchange inasmuch as it is Na+ dependent, amiloride sensitive, and accompanied by H+ efflux and net Na+ gain. A shift in the pHi dependence underlies the activation of the antiport. The effect of [Ca2+]i on Na+/H+ exchange was not associated with redistribution of protein kinase C and was also observed in cells previously depleted of this enzyme. Treatment with ionomycin induced significant cell shrinking. Prevention of shrinking largely eliminated the activation of the antiport. Moreover, a comparable shrinking produced by hypertonic media also activated the antiport. It is concluded that stimulation of Na+/H+ exchange by elevation of [Ca2+]i is due, at least in part, to cell shrinking and does not require stimulation of protein kinase C.


1980 ◽  
Vol 63 (3) ◽  
pp. 258-265 ◽  
Author(s):  
C.D. Platsoucas ◽  
S.G. Robbins ◽  
N. Catsimpoolas

2009 ◽  
Vol 29 (9) ◽  
pp. 2335-2345 ◽  
Author(s):  
Utsav H. Saxena ◽  
Christina M. H. Powell ◽  
Jill K. Fecko ◽  
Roxanne Cacioppo ◽  
Hubert S. Chou ◽  
...  

ABSTRACT Transcription factor LSF is required for progression from quiescence through the cell cycle, regulating thymidylate synthase (Tyms) expression at the G1/S boundary. Given the constant level of LSF protein from G0 through S, we investigated whether LSF is regulated by phosphorylation in G1. In vitro, LSF is phosphorylated by cyclin E/cyclin-dependent kinase 2 (CDK2), cyclin C/CDK2, and cyclin C/CDK3, predominantly on S309. Phosphorylation of LSF on S309 is maximal 1 to 2 h after mitogenic stimulation of quiescent mouse fibroblasts. This phosphorylation is mediated by cyclin C-dependent kinases, as shown by coimmunoprecipitation of LSF and cyclin C in early G1 and by abrogation of LSF S309 phosphorylation upon suppression of cyclin C with short interfering RNA. Although mouse fibroblasts lack functional CDK3 (the partner of cyclin C in early G1 in human cells), CDK2 compensates for this absence. By transient transfection assays, phosphorylation at S309, mediated by cyclin C overexpression, inhibits LSF transactivation. Moreover, overexpression of cyclin C and CDK3 inhibits induction of endogenous Tyms expression at the G1/S transition. These results identify LSF as only the second known target (in addition to pRb) of cyclin C/CDK activity during progression from quiescence to early G1. Unexpectedly, this phosphorylation prevents induction of LSF target genes until late G1.


Sign in / Sign up

Export Citation Format

Share Document