Early membrane potential and cytoplasmic calcium changes during mitogenic stimulation of WEHI 231 cell line by polyene antibiotics, lipopolysaccharide and anti-immunoglobulin

1990 ◽  
Vol 1051 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Nelly Henry-Toulmé ◽  
Pierre Sarthou ◽  
Jacques Bolard
1983 ◽  
Vol 212 (3) ◽  
pp. 685-690 ◽  
Author(s):  
T R Hesketh ◽  
T Pozzan ◽  
G A Smith ◽  
J C Metcalfe

Three aspects of the calcium hypothesis we have proposed previously [Metcalfe, Pozzan, Smith & Hesketh (1980) Biochem. Soc. Symp. 45, 1-26] for the control of mitogenic stimulation of lymphocytes are examined in studies on the mitogenic action of the Ca2+ ionophore A23187 and its effect on cap formation. (1) Pig lymphocytes that were mitogenically stimulated by continuous incubation with 3H-labelled A23187 for 48 h contained between 3 and 15 amol of ionophore per cell. Lymphocytes exposed to 3H-labelled A23187 for 2h before washing the cells and resuspending them in ionophore-free medium were only stimulated mitogenically at 48h if the residual ionophore associated with the cells after washing was in the concentration range 3-15 amol per cell. When the cells were washed repeatedly after 2h incubation with ionophore to reduce the cell-associated ionophore below the critical concentration range, no mitogenic stimulation occurred as a result of short-term exposure to any ionophore concentration. Re-addition of ionophore to within the indicated range of cell-associated concentrations restored mitogenic stimulation at 48h. We conclude that large, short-term Ca2+ fluxes into the cells induced by the ionophore cannot generate a mitogenic signal that commits the cells to enter the cell cycle. (2) Further experiments with the ionophore showed that detectable mitogenic stimulation at 48h required a minimum of 3h exposure to optimal ionophore concentrations, and that maximal stimulation required at least 20h exposure. This is consistent with the view that a prolonged increase in the free cytoplasmic calcium concentration is required to stimulate the maximum proportion of the cells into the cell cycle. (3) Mouse splenic lymphocytes treated for short periods with very high ionophore concentrations (30 microM) in the presence of various external Ca2+ concentrations showed significant inhibition of cap formation of surface immunoglobulin receptors in the range 1-10 microM-Ca2+ in normal or depolarizing medium. We conclude that mitogens at optimal concentrations for the stimulation of lymphocytes do not cause any early increase in the free cytoplasmic Ca2+ concentration above 10 microM.


1983 ◽  
Vol 258 (8) ◽  
pp. 4876-4882 ◽  
Author(s):  
T R Hesketh ◽  
G A Smith ◽  
J P Moore ◽  
M V Taylor ◽  
J C Metcalfe

2014 ◽  
Vol 306 (4) ◽  
pp. C334-C342 ◽  
Author(s):  
Eiji Takahashi ◽  
Michihiko Sato

To elucidate how tumor cells produce energy in oxygen-depleted microenvironments, we studied the possibility of mitochondrial electron transport without oxygen. We produced well-controlled oxygen gradients (ΔO2) in monolayer-cultured cells. We then visualized oxygen levels and mitochondrial membrane potential (ΔΦm) in individual cells by using the red shift of green fluorescent protein (GFP) fluorescence and a cationic fluorescent dye, respectively. In this two-dimensional tissue model, ΔΦm was abolished in cells >500 μm from the oxygen source [the anoxic front (AF)], indicating limitations in diffusional oxygen delivery. This result perfectly matched GFP-determined ΔO2. In cells pretreated with dimethyloxaloylglycine (DMOG), a prolyl hydroxylase domain-containing protein (PHD) inhibitor, the AF was expanded to 1,500–2,000 μm from the source. In these cells, tissue ΔO2 was substantially decreased, indicating that PHD pathway activation suppressed mitochondrial respiration. The expansion of the AF and the reduction of ΔO2 were much more prominent in a cancer cell line (Hep3B) than in the equivalent fibroblast-like cell line (COS-7). Hence, the results indicate that PHD pathway-activated cells can sustain ΔΦm, despite significantly decreased electron flux to complex IV. Complex II inhibition abolished the effect of DMOG in expanding the AF, although tissue ΔO2 remained shallow. Separate experiments demonstrated that complex II plays a substantial role in sustaining ΔΦm in DMOG-pretreated Hep3B cells with complex III inhibition. From these results, we conclude that PHD pathway activation can sustain ΔΦm in an otherwise anoxic microenvironment by decreasing tissue ΔO2 while activating oxygen-independent electron transport in mitochondria.


1993 ◽  
Vol 102 (4) ◽  
pp. 667-692 ◽  
Author(s):  
E Hamada ◽  
T Nakajima ◽  
S Ota ◽  
A Terano ◽  
M Omata ◽  
...  

The effects of acetylcholine (ACh) and histamine (His) on the membrane potential and current were examined in JR-1 cells, a mucin-producing epithelial cell line derived from human gastric signet ring cell carcinoma. The tight-seal, whole cell clamp technique was used. The resting membrane potential, the input resistance, and the capacitance of the cells were approximately -12 mV, 1.4 G ohms, and 50 pF, respectively. Under the voltage-clamp condition, no voltage-dependent currents were evoked. ACh or His added to the bathing solution hyperpolarized the membrane by activating a time- and voltage-independent K+ current. The ACh-induced hyperpolarization and K+ current persisted, while the His response desensitized quickly (< 1 min). These effects of ACh and His were mediated predominantly by m3-muscarinic and H1-His receptors, respectively. The K+ current induced by ACh and His was inhibited by charybdotoxin, suggesting that it is a Ca(2+)-activated K+ channel current (IK.Ca). The measurement of intracellular Ca2+ ([Ca2+]i) using Indo-1 revealed that both agents increased [Ca2+]i with similar time courses as they increased IK.Ca. When EGTA in the pipette solution was increased from 0.15 to 10 mM, the induction of IK.Ca by ACh and His was abolished. Thus, both ACh and His activate IK.Ca by increasing [Ca2+]i in JR-1 cells. In the Ca(2+)-free bathing solution (0.15 mM EGTA in the pipette), ACh evoked IK.Ca transiently. Addition of Ca2+ (1.8 mM) to the bath immediately restored the sustained IK.Ca. These results suggest that the ACh response is due to at least two different mechanisms; i.e., the Ca2+ release-related initial transient activation and the Ca2+ influx-related sustained activation of IK.Ca. Probably because of desensitization, the Ca2+ influx-related component of the His response could not be identified. Intracellularly applied inositol 1,4,5-trisphosphate (IP3), with and without inositol 1,3,4,5-tetrakisphosphate (IP4), mimicked the ACh response. IP4 alone did not affect the membrane current. Under the steady effect of IP3 or IP3 plus IP4, neither ACh nor His further evoked IK.Ca. Intracellular application of heparin or of the monoclonal antibody against the IP3 receptor, mAb18A10, inhibited the ACh and His responses in a concentration-dependent fashion. Neomycin, a phospholipase C (PLC) inhibitor, also inhibited the agonist-induced response in a concentration-dependent fashion. Although neither pertussis toxin (PTX) nor N-ethylmaleimide affected the ACh or His activation of IK,Ca, GDP beta S attenuated and GTP gamma S enhanced the agonist response.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 89 (2) ◽  
pp. 185-213 ◽  
Author(s):  
S Grinstein ◽  
S Cohen

The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equivalent) uptake in response to membrane hyperpolarization since: it was enhanced by pretreatment with conductive protonophores, it could be mimicked by valinomycin, and it was decreased by depolarization with K+ or gramicidin. In addition, activation of metabolic H+ production also contributes to the acidification. The alkalinization is due to Na+/H+ exchange inasmuch as it is Na+ dependent, amiloride sensitive, and accompanied by H+ efflux and net Na+ gain. A shift in the pHi dependence underlies the activation of the antiport. The effect of [Ca2+]i on Na+/H+ exchange was not associated with redistribution of protein kinase C and was also observed in cells previously depleted of this enzyme. Treatment with ionomycin induced significant cell shrinking. Prevention of shrinking largely eliminated the activation of the antiport. Moreover, a comparable shrinking produced by hypertonic media also activated the antiport. It is concluded that stimulation of Na+/H+ exchange by elevation of [Ca2+]i is due, at least in part, to cell shrinking and does not require stimulation of protein kinase C.


2002 ◽  
Vol 9 (2) ◽  
pp. 63-72 ◽  
Author(s):  
Dragana Vucevic ◽  
Miodrag Colic ◽  
Petar Popovic ◽  
Sonja Gašic

In this work, the interaction between a rat cortical thymic epithelial cell (TEC) line (R-TNC.1) with nursing activity and thymocytes as well as BWRT 8 thymocyte hybridoma (TH) cells has been studied. The R-TNC.1 cell line significantly bound thymocytes and TH. Binding was stronger during the first 30 min of cell incubation and was followed by a progressive deadhesion. Among adherent thymocytes the proportion of apoptotic cells increased with culture time which was a consequence of higher capacity of the line for binding of apoptotic than viable cells and induction of apoptosis in a subset of adherent thymocytes. Emperiopolesis activity of this thymic nurse cell (TNC) line was manifested by engulfment of thymocytes as well as TH cells. A subset of viable intra-TNC thymocytes has been triggered to die by apoptosis, whereas other internalized thymocytes have been stimulated to proliferate, as measured by an increase in the percentage of cells in mitosis and higher incorporation of bromodeoxyuridine (BrdU), in comparison to thymocytes cultivated alone. A significant stimulation of proliferation of engulfed TH cells was also observed. The R-TNC.1 cell line efficiently phagocytosed both apoptotic thymocytes and TH, and the process is followed by intra-TNC destruction of ingested cells. Cumulatively, these results suggest different role of the R-TNC.1 clone: phagocytosis of apoptotic cells; induction of apoptotic cell death in a subset of both bound and internalized thymocytes and stimulation of proliferation of a subset of intra-TNC thymocytes or TH cells.


Sign in / Sign up

Export Citation Format

Share Document