antigenic stimulation
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 22)

H-INDEX

44
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Peter M. Sullivan ◽  
Steven James Reed ◽  
Vandana Kalia ◽  
Surojit Sarkar

Robust T cell responses are crucial for effective anti-tumor responses and often dictate patient survival. However, in the context of solid tumors, both endogenous T cell responses and current adoptive T cell therapies are impeded by the immunosuppressive tumor microenvironment (TME). A multitude of inhibitory signals, suppressive immune cells, metabolites, hypoxic conditions and limiting nutrients are believed to render the TME non-conducive to sustaining productive T cell responses. In this study we conducted an in-depth phenotypic and functional comparison of tumor-specific T cells and tumor-nonspecific bystander memory T cells within the same TME. Using two distinct TCR transgenic and solid-tumor models, our data demonstrate that despite exposure to the same cell-extrinsic factors of the TME, the tumor-nonspecific bystander CD8 T cells retain the complete panoply of memory markers, and do not share the same exhaustive phenotype as tumor-reactive T cells. Compared to tumor-specific T cells, bystander memory CD8 T cells in the TME also retain functional effector cytokine production capabilities in response to ex vivo cognate antigenic stimulation. Consistent with these results, bystander memory T cells isolated from tumors showed enhanced recall responses to secondary bacterial challenge in a T cell transplant model. Importantly, the tumor-resident bystander memory cells could also efficiently utilize the available resources within the TME to elaborate in situ recall effector functions following intra-tumoral peptide antigen injection. Additionally, CRISPR-Cas9 gene deletion studies showed that CXCR3 was critical for the trafficking of both tumor antigen-specific and bystander memory T cells to solid tumors. Collectively, these findings that T cells can persist and retain their functionality in distinct solid tumor environments in the absence of cognate antigenic stimulation, support the notion that persistent antigenic signaling is the central driver of T cell exhaustion within the TME. These studies bear implications for programming more efficacious TCR- and CAR-T cells with augmented therapeutic efficacy and longevity through regulation of antigen and chemokine receptors.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 327-327
Author(s):  
Ranjan Maity ◽  
Sacha Benaoudia ◽  
Franz Zemp ◽  
Holly Lee ◽  
Elie Barakat ◽  
...  

Abstract Chimeric antigen receptor (CAR) T cells targeting the B-cell maturation antigen (BCMA) have resulted in deep responses in patients with relapsed MM however most remissions are not sustained. While cellular and molecular mediators of relapse post CAR T therapy in MM are not fully delineated, current data suggest three possible mechanisms including the lack of persistence of the CAR T cell product, acquired exhaustion and less commonly loss of BCMA expression. Using CITE-seq we measured the expansion of variable T cell subsets, T cell specific activation and inhibitor markers and their functional states in serial blood and marrow samples (n=10) collected from patients treated with BCMA targeting CAR T cells. CAR T cells were identified by the expression of the chimeric CAR T cell transcript. With the exception of one patient where biallelic loss of BCMA was identified at relapse, CAR T cells of resistant patients were enriched with terminally exhausted CD45RA+ cells with loss of CD28, low BCL2L1 (gene encoding BCL-XL) expression, high CD57 with co-expression of checkpoint inhibitors (LAG3, TIGIT and PD1). The lack of persistence of the CAR T cells product was notable in all relapsing patients consistent with an activation induced cells death (AICD) specially in the setting of chronic antigenic stimulation. Cognizant of the role BCL-XL plays in T cells survival in response to CD28 co-stimulatory signaling, we postulated that increasing BCL-XL expression is a feasible strategy to enhance CAR T cell resistant to AICD, improve their persistence and anti-BCMA reactivity. To this goal, we designed a 2nd generation lentiviral CAR construct where the anti-BCAM scFV-41BBz CAR and the BCL2L1 cDNA were linked with self-cleaving 2A sequence. The efficiency in eradicating MM cells of this BCL-XL armored CAR (BCMA_BCL2L1_CAR) was compared to that of non-unarmored CAR (BCMA_CAR) in vitro and i n vivo studies. While BCMA_BCL2L1_CAR and BCMA_CAR were equally cytotoxic to OPM2 MM cells, in MM cell lines expressing the FAS death receptor ligand FASLG (MM1S, OCMY5 and H929) BCMA_BCL2L1_CAR viability and cytolytic activity was significantly superior to that of unarmored BCMA_CAR. Of note, the expression of FASLG, a known interferon response gene, was upregulated in H929 cells when co-cultured with CAR T cells. Importantly, under chronic antigenic stimulation conditions (FIG 1A), where CAR T cells were stimulated every 6 days over a 28 days period with irradiated OPM2 cells, we found no phenotypic difference between BCMA_BCL2L1_CAR and BCMA_CAR with respect to the composition of effector memory T cells (Tem: CCR7− CD45RO+ CD45RA−) or central memory T cells (Tcm: CCR7+CD45RO+CD45RA−) or terminal effector / exhausted T cells. However, under these chronic antigenic stimulation conditions, the CAR T cells viability, proliferation (FIG 1B) and anti-MM cytotoxic activities (FIG 1C) of the BCMA_CAR were dramatically reduced compared to that of the BCL2L1 armored CAR. Furthermore, in initial animal studies where NOD-SCID mice were tail vein injected with 2e6 OPM2 MM cells transduced with a luciferin reporter gene, followed 10 days later by control T cells, BCMA_CAR or BCMA_BCL2L1_CAR T cells IV injection, and despite a skewing to a larger initial disease burden in the BCMA-BCL2L1-CAR group, BCL2L1 armored CAR T cells resulted in more prolonged disease control and animal survival compared to the BCMA_CAR treated mice (FIG 1D). Our studies indicate that BCL2L1 blockade of AICD not only enhanced the viability and proliferation of BCMA targeting CAR T cells but surprisingly also reduced their functional exhaustion. Our findings provide an novel approach for CAR T optimization and overcoming disease relapse resulting from lack of persistence and/or T cells exhaustion. Figure 1 Figure 1. Disclosures Neri: Amgen: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria. Bahlis: Sanofi: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Genentech: Consultancy; Janssen: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; GlaxoSmithKline: Consultancy, Honoraria; BMS/Celgene: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Can Liu ◽  
Timothy Qi ◽  
J. Justin Milner ◽  
Yong Lu ◽  
Yanguang Cao

Despite the success in B-cell malignancies, chimeric antigen receptor (CAR)-T cell therapies have not yet demonstrated consistent efficacy across all patients and tumor types, particularly against solid tumors. Higher rates of T cell exhaustion are associated with inferior clinical outcomes following CAR-T cell therapy, which is prevalent in solid tumors. T cell exhaustion may originate from persistent and chronic antigen stimulation by tumor cells that resist and/or evade T cell-mediated killing. We exploited CAR-T exhaustion with a classic negative feedback model (incoherent feedforward loop, IFFL) to investigate the balance between CAR-T cell activation and exhaustion under different antigen presentation dynamics. Built upon the experimental and clinical data, we hypothesize that the speed and anatomical location of antigenic stimulation are both crucial to CAR-T cell response. Chronic antigenic stimulation as well as the harsh tumor microenvironment present multiple barriers to CAR-T cell efficacy in solid tumors. Many therapeutic strategies are individually insufficient to improve of CAR-T responses against solid tumors, as they clear but one of the many barriers CAR-T cells face in solid tumors. A combination strategy targeting multiple barriers holds promise to improve CAR-T therapy in solid tumors.


2021 ◽  
Author(s):  
Mohamed S. Abdel-Hakeem ◽  
Sasikanth Manne ◽  
Jean-Christophe Beltra ◽  
Erietta Stelekati ◽  
Zeyu Chen ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 1008-1019 ◽  
Author(s):  
Mohamed S. Abdel-Hakeem ◽  
Sasikanth Manne ◽  
Jean-Christophe Beltra ◽  
Erietta Stelekati ◽  
Zeyu Chen ◽  
...  

Author(s):  
Mariana V. Rosemblatt ◽  
Brian Parra-Tello ◽  
Pedro Briceño ◽  
Elizabeth Rivas-Yáñez ◽  
Suat Tucer ◽  
...  

Ecto-5′-nucleotidase (CD73) is an enzyme present on the surface of tumor cells whose primary described function is the production of extracellular adenosine. Due to the immunosuppressive properties of adenosine, CD73 is being investigated as a target for new antitumor therapies. We and others have described that CD73 is present at the surface of different CD8+ T cell subsets. Nonetheless, there is limited information as to whether CD73 affects CD8+ T cell proliferation and survival. In this study, we assessed the impact of CD73 deficiency on CD8+ T cells by analyzing their proliferation and survival in antigenic and homeostatic conditions. Results obtained from adoptive transfer experiments demonstrate a paradoxical role of CD73. On one side, it favors the expression of interleukin-7 receptor α chain on CD8+ T cells and their homeostatic survival; on the other side, it reduces the survival of activated CD8+ T cells under antigenic stimulation. Also, upon in vitro antigenic stimulation, CD73 decreases the expression of interleukin-2 receptor α chain and the anti-apoptotic molecule Bcl-2, findings that may explain the reduced CD8+ T cell survival observed in this condition. These results indicate that CD73 has a dual effect on CD8+ T cells depending on whether they are subject to an antigenic or homeostatic stimulus, and thus, special attention should be given to these aspects when considering CD73 blockade in the design of novel antitumor therapies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yapeng Li ◽  
Junfeng Gao ◽  
Mohammad Kamran ◽  
Laura Harmacek ◽  
Thomas Danhorn ◽  
...  

AbstractMast cells are critical effectors of allergic inflammation and protection against parasitic infections. We previously demonstrated that transcription factors GATA2 and MITF are the mast cell lineage-determining factors. However, it is unclear whether these lineage-determining factors regulate chromatin accessibility at mast cell enhancer regions. In this study, we demonstrate that GATA2 promotes chromatin accessibility at the super-enhancers of mast cell identity genes and primes both typical and super-enhancers at genes that respond to antigenic stimulation. We find that the number and densities of GATA2- but not MITF-bound sites at the super-enhancers are several folds higher than that at the typical enhancers. Our studies reveal that GATA2 promotes robust gene transcription to maintain mast cell identity and respond to antigenic stimulation by binding to super-enhancer regions with dense GATA2 binding sites available at key mast cell genes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Abel Trujillo-Ocampo ◽  
Hyun-Woo Cho ◽  
Michael Clowers ◽  
Sumedha Pareek ◽  
Wilfredo Ruiz-Vazquez ◽  
...  

Invariant natural killer T (iNKT) cells are innate-like T lymphocytes cells that recognize glycolipid antigens associated with CD1d, non-classical antigen presenting proteins. They can drive either pro-inflammatory (Th-1) or anti-inflammatory (Th-2) immune microenvironment through the production of both Th-1 and Th-2 type cytokines upon activation, thus play a vital role in cancer, infection, and autoimmune diseases. Adoptive cell therapy using ex vivo expanded iNKT cells is a promising approach to enhance anti-tumor immunity or immunosuppression. However, overcoming phenotypic and functional heterogeneity and promoting in vivo persistency of iNKT cells remains to be a challenge. Here, we compared various methods for ex vivo expansion of human iNKT cells and assessed the quality of expansion, phenotype, and cytokine production profile of expanded iNKT cells. While a direct stimulation of iNKT cells in peripheral blood mononuclear cells with agonist glycolipid led to the expansion of iNKT cells in varying degrees, stimulation of enriched iNKT cells by irradiated autologous peripheral blood mononuclear cells or allogeneic dendritic cells resulted in consistent expansion of highly pure iNKT cells. Interestingly, the mode of antigenic stimulation influenced the dominant subtype of expanded iNKT cells. Further, we evaluated whether additional IL-7 or IL-15 during antigenic stimulation with allogeneic dendritic cells can improve the phenotypic heterogeneity and modify cytokine production profile of iNKT cells expanded from 18 consecutive donors. The presence of IL-7 or IL-15 during antigenic stimulation did not affect the fold of expansion or purity of expanded iNKT cells. However, IL-7, but not IL-15, led to a better expansion of CD4+ iNKT cells, enhanced Th-2 type cytokine production of CD4+ iNKT cells, and maintained the expansion of central memory (CD45RA-CD62L+) CD4+ iNKT cells. Our results suggest the addition of IL-7 during antigenic stimulation with allogeneic dendritic cells can promote the expansion of CD62L+Th-2+CD4+ human iNKT cells that can be used as novel immunotherapeutic to control excessive inflammation to treat various autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document