scholarly journals Analysis of histone gene expression during the cell cycle in HeLa cells by using cloned human histone genes.

1982 ◽  
Vol 79 (3) ◽  
pp. 749-753 ◽  
Author(s):  
R. Rickles ◽  
F. Marashi ◽  
F. Sierra ◽  
S. Clark ◽  
J. Wells ◽  
...  

The purpose of studies on the regulation of histone gene expression is to explain, for instance, how histone proteins arise in defined stoichiometric relationships in the chromatin, how transcription of histone genes is regulated in the cell cycle and how during the development of some species, histone variant genes are activated sequentially. The control of histone gene expression has m any interesting facets. One is struck by the major differences in balance and importance of the various regulatory mechanisms as they become apparent from investigations in m any laboratories. For example, in yeast, histone gene transcription is tightly coupled to the cell cycle, and the amounts of histone synthesized are determined largely by regulation of histone m RN A turnover (Hereford & Osley 1981). At the other extreme, there is the example of the maturing frog oöcyte where histone m RN A synthesis is uncoupled from DNA synthesis and yields pools of histone 1000-fold in excess of nuclear DNA mass (reviewed by Woodland 1980). Recent reports suggest that even the details of histone gene transcription may vary during the development of the species. The tandem histone gene clusters of sea urchin (G. Spinelli, unpublished results) and frog oocytes are transcribed polycistronically at least at some stages of their development (J. Gall, personal communication), whereas histone gene clusters of the cleaving sea urchin embryos appear to be transcribed monocistronically (Mauron et al. 1981). Finally, in the early embryo the partitioning of the m RN A between nucleus and cytoplasm may be also a regulative process (DeLeon al. 1983).


2021 ◽  
pp. mbc.E20-10-0645
Author(s):  
James P. Kemp ◽  
Xiao-Cui Yang ◽  
Zbigniew Dominski ◽  
William F. Marzluff ◽  
Robert J. Duronio

The Histone Locus Body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core-shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that co-transcriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core-shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core-shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.


Cell ◽  
1986 ◽  
Vol 45 (4) ◽  
pp. 471-472 ◽  
Author(s):  
Daniel Schümperli

2012 ◽  
Vol 32 (19) ◽  
pp. 3860-3871 ◽  
Author(s):  
R. Medina ◽  
P. N. Ghule ◽  
F. Cruzat ◽  
A. R. Barutcu ◽  
M. Montecino ◽  
...  

1984 ◽  
Vol 4 (7) ◽  
pp. 1363-1371 ◽  
Author(s):  
S J Flint ◽  
M A Plumb ◽  
U C Yang ◽  
G S Stein ◽  
J L Stein

The influence of adenovirus type 2 infection of HeLa cells upon expression of human histone genes was examined as a function of the period of infection. Histone RNA synthesis was assayed after run-off transcription in nuclei isolated from mock-infected cells and after various periods of adenovirus infection. Histone protein synthesis was measured by [3H]leucine labeling of intact cells and fluorography of electrophoretically fractionated nuclear and cytoplasmic proteins. The cellular representation of RNA species complementary to more than 13 different human histone genes was determined by RNA blot analysis of total cellular, nuclear or cytoplasmic RNA by using a series of 32P-labeled cloned human histone genes as hybridization probes and also by analysis of 3H-labeled histone mRNA species synthesized in intact cells. By 18 h after infection, HeLa cell DNA synthesis and all parameters of histone gene expression, including transcription and the nuclear and cytoplasmic concentrations of core and H1 mRNA species, were reduced to less than 5 to 10% of the control values. By contrast, transcription and processing of other cellular mRNA sequences have been shown to continue throughout this period of infection. The early period of adenovirus infection was marked by an inhibition of transcription of histone genes that accompanied the reduction in rate of HeLa cell DNA synthesis. These results suggest that the adenovirus-induced inhibition of histone gene expression is mediated in part at the transcriptional level. However, the persistence of histone mRNA species at concentrations comparable to those of mock-infected control cells during the early phase of the infection, despite a reduction in histone gene transcription and histone protein synthesis, implies that histone gene expression is also regulated post-transcriptionally in adenovirus-infected cells. These results suggest that the tight coupling between histone mRNA concentrations and the rate of cellular DNA synthesis, observed when DNA replication is inhibited by a variety of drugs, is not maintained after adenovirus infection.


1979 ◽  
Vol 76 (10) ◽  
pp. 4995-4999 ◽  
Author(s):  
S. Detke ◽  
A. Lichtler ◽  
I. Phillips ◽  
J. Stein ◽  
G. Stein

1995 ◽  
Vol 7 (2) ◽  
pp. 245-252 ◽  
Author(s):  
Jean-Philippe Reichheld ◽  
Seiji Sonobe ◽  
Bernadette Clement ◽  
Nicole Chaubet ◽  
Claude Gigot

1998 ◽  
Vol 18 (12) ◽  
pp. 7106-7118 ◽  
Author(s):  
Katherine A. Eliassen ◽  
Amy Baldwin ◽  
Eric M. Sikorski ◽  
Myra M. Hurt

ABSTRACT Expression of the highly conserved replication-dependent histone gene family increases dramatically as a cell enters the S phase of the eukaryotic cell cycle. Requirements for normal histone gene expression in vivo include an element, designated α, located within the protein-encoding sequence of nucleosomal histone genes. Mutation of 5 of 7 nucleotides of the mouse H3.2 α element to yield the sequence found in an H3.3 replication-independent variant abolishes the DNA-protein interaction in vitro and reduces expression fourfold in vivo. A yeast one-hybrid screen of a HeLa cell cDNA library identified the protein responsible for recognition of the histone H3.2 α sequence as the transcription factor Yin Yang 1 (YY1). YY1 is a ubiquitous and highly conserved transcription factor reported to be involved in both activation and repression of gene expression. Here we report that the in vitro histone α DNA-protein interaction depends on YY1 and that mutation of the nucleotides required for the in vitro histone α DNA-YY1 interaction alters the cell cycle phase-specific up-regulation of the mouse H3.2 gene in vivo. Because all mutations or deletions of the histone α sequence both abolish interactions in vitro and cause an in vivo decrease in histone gene expression, the recognition of the histone α element by YY1 is implicated in the correct temporal regulation of replication-dependent histone gene expression in vivo.


Sign in / Sign up

Export Citation Format

Share Document