scholarly journals Role for a YY1-Binding Element in Replication-Dependent Mouse Histone Gene Expression

1998 ◽  
Vol 18 (12) ◽  
pp. 7106-7118 ◽  
Author(s):  
Katherine A. Eliassen ◽  
Amy Baldwin ◽  
Eric M. Sikorski ◽  
Myra M. Hurt

ABSTRACT Expression of the highly conserved replication-dependent histone gene family increases dramatically as a cell enters the S phase of the eukaryotic cell cycle. Requirements for normal histone gene expression in vivo include an element, designated α, located within the protein-encoding sequence of nucleosomal histone genes. Mutation of 5 of 7 nucleotides of the mouse H3.2 α element to yield the sequence found in an H3.3 replication-independent variant abolishes the DNA-protein interaction in vitro and reduces expression fourfold in vivo. A yeast one-hybrid screen of a HeLa cell cDNA library identified the protein responsible for recognition of the histone H3.2 α sequence as the transcription factor Yin Yang 1 (YY1). YY1 is a ubiquitous and highly conserved transcription factor reported to be involved in both activation and repression of gene expression. Here we report that the in vitro histone α DNA-protein interaction depends on YY1 and that mutation of the nucleotides required for the in vitro histone α DNA-YY1 interaction alters the cell cycle phase-specific up-regulation of the mouse H3.2 gene in vivo. Because all mutations or deletions of the histone α sequence both abolish interactions in vitro and cause an in vivo decrease in histone gene expression, the recognition of the histone α element by YY1 is implicated in the correct temporal regulation of replication-dependent histone gene expression in vivo.

1996 ◽  
Vol 16 (5) ◽  
pp. 1889-1895 ◽  
Author(s):  
F Oswald ◽  
T Dobner ◽  
M Lipp

Histone gene expression is restricted to the S phase of the cell cycle. Control is mediated by a complex network of sequence-specific DNA-binding factors and protein-protein interactions in response to cell cycle progression. To further investigate the regulatory functions that are associated at the transcriptional level, we analyzed the regulation of a replication-dependent human H2A.1-H2B.2 gene pair. We found that transcription factor E2F binds specifically to an E2F recognition motif in the H2A.1 promoter region. Activation of the H2A.1 promoter by E2F-1 was shown by use of luciferase reporter constructs of the intergenic promoter region. Overexpression of the human retinoblastoma suppressor gene product RB suppressed E2F-1 mediated transcriptional activation, indicating an E2F-dependent regulation of promoter activity during the G1-to-S-phase transition. Furthermore, the activity of the H2A.1 promoter was also downregulated by overexpression of the RB-related p107, a protein that has been detected in S-phase-specific protein complexes of cyclin A, E2F, and cdk2. In synchronized HeLa cells, expression of luciferase activity was induced at the beginning of DNA synthesis and was dependent on the presence of an E2F-binding site in the H2A.1 promoter. Together with the finding that E2F-binding motifs are highly conserved in H2A promoters of other species, our results suggest that E2F plays an important role in the coordinate regulation of S-phase-specific histone gene expression.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2006 ◽  
Vol 20 (6) ◽  
pp. 800-802 ◽  
Author(s):  
Satoru Kobayashi ◽  
Troy Lackey ◽  
Yuan Huang ◽  
Egbert Bisping ◽  
William T. Pu ◽  
...  

2012 ◽  
Vol 303 (9) ◽  
pp. E1166-E1176 ◽  
Author(s):  
Wilfred Ip ◽  
Weijuan Shao ◽  
Yu-ting Alex Chiang ◽  
Tianru Jin

Certain single nucleotide polymorphisms (SNPs) in transcription factor 7-like 2 (TCF7L2) are strongly associated with the risk of type 2 diabetes. TCF7L2 and β-catenin (β-cat) form the bipartite transcription factor cat/TCF in stimulating Wnt target gene expression. cat/TCF may also mediate the effect of other signaling cascades, including that of cAMP and insulin in cell-type specific manners. As carriers of TCF7L2 type 2 diabetes risk SNPs demonstrated increased hepatic glucose production, we aimed to determine whether TCF7L2 expression is regulated by nutrient availability and whether TCF7L2 and Wnt regulate hepatic gluconeogenesis. We examined hepatic Wnt activity in the TOPGAL transgenic mouse, assessed hepatic TCF7L2 expression in mice upon feeding, determined the effect of insulin on TCF7L2 expression and β-cat Ser675 phosphorylation, and investigated the effect of Wnt activation and TCF7L2 knockdown on gluconeogenic gene expression and glucose production in hepatocytes. Wnt activity was observed in pericentral hepatocytes in the TOPGAL mouse, whereas TCF7L2 expression was detected in human and mouse hepatocytes. Insulin and feeding stimulated hepatic TCF7L2 expression in vitro and in vivo, respectively. In addition, insulin activated β-cat Ser675 phosphorylation. Wnt activation by intraperitoneal lithium injection repressed hepatic gluconeogenic gene expression in vivo, whereas lithium or Wnt-3a reduced gluconeogenic gene expression and glucose production in hepatic cells in vitro. Small interfering RNA-mediated TCF7L2 knockdown increased glucose production and gluconeogenic gene expression in cultured hepatocytes. These observations suggest that Wnt signaling and TCF7L2 are negative regulators of hepatic gluconeogenesis, and TCF7L2 is among the downstream effectors of insulin in hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document