scholarly journals Isolation of sea urchin egg microtubules with taxol and identification of mitotic spindle microtubule-associated proteins with monoclonal antibodies.

1983 ◽  
Vol 80 (20) ◽  
pp. 6259-6263 ◽  
Author(s):  
R. B. Vallee ◽  
G. S. Bloom
1985 ◽  
Vol 101 (5) ◽  
pp. 1858-1870 ◽  
Author(s):  
N Hirokawa ◽  
R Takemura ◽  
S Hisanaga

We have studied cytoskeletal architectures of isolated mitotic apparatus from sea urchin eggs using quick-freeze, deep-etch electron microscopy. This method revealed the existence of an extensive three-dimensional network of straight and branching crossbridges between spindle microtubules. The surface of the spindle microtubules was almost entirely covered with hexagonally packed, small, round button-like structures which were very uniform in shape and size (approximately 8 nm in diameter), and these microtubule buttons frequently provided bases for crossbridges between adjacent microtubules. These structures were removed from the surface of microtubules by high salt (0.6 M NaCl) extraction. Microtubule-associated proteins (MAPs) and microtubules isolated from mitotic spindles which were mainly composed of a large amount of 75-kD protein and some high molecular mass (250 kD, 245 kD) proteins were polymerized in vitro and examined by quick-freeze, deep-etch electron microscopy. The surfaces of microtubules were entirely covered with the same hexagonally packed round buttons, the arrangement of which is intimately related to that of tubulin dimers. Short crossbridges and some longer crossbridges were also observed. High salt treatment (0.6 M NaCl) extracted both 75-kD protein and high molecular weight proteins and removed microtubule buttons and most of crossbridges from the surface of microtubules. Considering the relatively high amount of 75-kD protein among MAPs isolated from mitotic spindles, it is concluded that these microtubule buttons probably consist of 75-kD MAP and that some of the crossbridges in vivo could belong to MAPs. Another kind of granule, larger in size (11-26 nm in diameter), was also on occasion associated with the surface of microtubules of mitotic spindles. A fine sidearm sometimes connected the larger granule to adjacent microtubules. Localization of cytoplasmic dynein ATPase in the mitotic spindle was investigated by electron microscopic immunocytochemistry with a monoclonal antibody (D57) against sea urchin sperm flagellar 21S dynein and colloidal gold-labeled second antibody. Immunogold particles were closely associated with spindle microtubules. 76% of these were within 50 nm and 55% were within 20 nm from the surface of the microtubules. These gold particles were sporadically found on both polar and kinetochore microtubules of half-spindles at both metaphase and anaphase. They localized also on the microtubules between sister chromatids in late anaphase. These data indicate that cytoplasmic dynein is attached to the microtubules in sea urchin mitotic spindles.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 87 (1) ◽  
pp. 71-84 ◽  
Author(s):  
K.A. Suprenant ◽  
J.C. Marsh

A new method for microtubule purification from unfertilized sea-urchin eggs was developed in order to obtain large quantities of calcium- and cold-labile microtubules that contained microtubule-associated components important for mitosis. By taking into consideration the pH, ionic composition of egg cytoplasm, and the physiological temperature for growth of the Pacific coast sea-urchin Strongylocentrotus purpuratus, methods were developed for the assembly of intact microtubules directly from unfertilized egg extracts. The microtubules obtained by cycles of temperature-dependent assembly and disassembly are composed of tubulin and abundant microtubule-associated proteins. These microtubules are cold- and calcium-labile and assemble at a critical protein concentration of 0.11 mg ml-1 at 24 degrees C. The yield of microtubule protein obtained by this new method is equivalent to that obtained with taxol (6–8 mg/20 ml packed eggs). Microtubules that have been fixed and prepared for electron microscopy are decorated with large, globular projections that are attached to the microtubule by thin stalks.


Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


2019 ◽  
Vol 2 (1) ◽  
pp. e201800169 ◽  
Author(s):  
Heidi LH Malaby ◽  
Dominique V Lessard ◽  
Christopher L Berger ◽  
Jason Stumpff

KIF18A (kinesin-8) is required for mammalian mitotic chromosome alignment. KIF18A confines chromosome movement to the mitotic spindle equator by accumulating at the plus-ends of kinetochore microtubule bundles (K-fibers), where it functions to suppress K-fiber dynamics. It is not understood how the motor accumulates at K-fiber plus-ends, a difficult feat requiring the motor to navigate protein dense microtubule tracks. Our data indicate that KIF18A's relatively long neck linker is required for the motor's accumulation at K-fiber plus-ends. Shorter neck linker (sNL) variants of KIF18A display a deficiency in accumulation at the ends of K-fibers at the center of the spindle. Depletion of K-fiber–binding proteins reduces the KIF18A sNL localization defect, whereas their overexpression reduces wild-type KIF18A's ability to accumulate on this same K-fiber subset. Furthermore, single-molecule assays indicate that KIF18A sNL motors are less proficient in navigating microtubules coated with microtubule-associated proteins. Taken together, these results support a model in which KIF18A's neck linker length permits efficient navigation of obstacles to reach K-fiber ends during mitosis.


1988 ◽  
Vol 107 (6) ◽  
pp. 2657-2667 ◽  
Author(s):  
A L Ingold ◽  
S A Cohn ◽  
J M Scholey

We have prepared and characterized seven mouse monoclonal antibodies (SUK 1-7) to the 130-kD heavy chain of sea urchin egg kinesin. On immunoblots, SUK 3 and SUK 4 cross-reacted with Drosophila embryo 116-kD heavy chains, and SUK 4, SUK 5, SUK 6, and SUK 7 bound to the 120-kD heavy chains of bovine brain kinesin. Three out of seven monoclonal antikinesins (SUK 4, SUK 6, and SUK 7) caused a dose-dependent inhibition of sea urchin egg kinesin-induced microtubule translocation, whereas the other four monoclonal antibodies had no detectable effect on this motility. The inhibitory monoclonal antibodies (SUK 4, SUK 6, and SUK 7) appear to bind to spatially related sites on an ATP-sensitive microtubule binding 45-kD chymotryptic fragment of the 130-kD heavy chain, whereas SUK 2 binds to a spatially distinct site. None of the monoclonal antikinesins inhibited the microtubule activated MgATPase activity of kinesin, suggesting that SUK 4, SUK 6, and SUK 7 uncouple this MgATPase activity from motility.


1986 ◽  
Vol 64 (3) ◽  
pp. 238-249 ◽  
Author(s):  
Parvaneh Rafiee ◽  
Sara Ann MacKinlay ◽  
Thomas H. MacRae

Incubation of Artemia cell-free extracts with taxol, followed by centrifugation through sucrose cushions, yielded pellets composed of short, morphologically normal microtubules which exhibited a tendency to fray at their ends. Immunological staining of protein blots with polyclonal or monoclonal antibodies revealed that the major pellet protein is tubulin and that bovine neural tubulin and Artemia tubulin are antigenically distinct. By several criteria, but prinicipally by their taxol-induced coassembly with tubulin, many of the nontubulin pellet proteins are microtubule-associated proteins (MAP). In spite of extensive morphogenesis, hatching, and the eventual resumption of mitosis during development, no new MAP appear, with reduction in the number of MAP after hatching the only observable change in these proteins. We have yet to demonstrate a function for Artemia MAP but have shown that the rate and extent of assembly of Artemia tubulin, which polymerizes readily in vitro in the absence of MAP, are stimulated by bovine MAP. Electrophoretic analysis revealed that the taxol-assembled microtubules were composed of several isotubulins, these being identical to the isoforms in biochemically purified Artemia tubulin. In addition, a new Artemia α-tubulin was observed, and it was shown that the isotubulin population does not change during the period of development examined. Maintenance of identical isotubulin populations in developing organisms for extended periods, which suggests that all tubulins are functional, in concert with the lack of change in tubulin during cell differentiation, runs counter to the proposal that chemically distinct isotubulins are required for assembly of functionally specific microtubules.


1989 ◽  
Vol 109 (6) ◽  
pp. 2977-2991 ◽  
Author(s):  
D R Kellogg ◽  
C M Field ◽  
B M Alberts

We have developed affinity chromatography methods for the isolation of microtubule-associated proteins (MAPs) from soluble cytoplasmic extracts and have used them to analyze the cytoskeleton of the early Drosophila embryo. More than 50 Drosophila embryo proteins bind to microtubule affinity columns. To begin to characterize these proteins, we have generated individual mouse polyclonal antibodies that specifically recognize 24 of them. As judged by immunofluorescence, some of the antigens localize to the mitotic spindle in the early Drosophila embryo, while others are present in centrosomes, kinetochores, subsets of microtubules, or a combination of these structures. Since 20 of the 24 antibodies stain microtubule structures, it is likely that most of the proteins that bind to our columns are associated with microtubules in vivo. Very few MAPS seem to be identically localized in the cell, indicating that the microtubule cytoskeleton is remarkably complex.


Sign in / Sign up

Export Citation Format

Share Document