Monoclonal Antibodies Show Cross-Reactivity of Alzheimer Neurofibrillary Tangles and Heat-Stable Microtubule-Associated Proteins

Author(s):  
Dennis W. Dickson ◽  
Hanna Ksiezak-Reding ◽  
Alex Crowe ◽  
Shu-Hui Yen
1995 ◽  
Vol 108 (4) ◽  
pp. 1679-1689 ◽  
Author(s):  
R. Dhamodharan ◽  
P. Wadsworth

Heat-stable brain microtubule associated proteins (MAPs) and purified microtubule associated protein 2 (MAP-2) were microinjected into cultured BSC-1 cells which had been previously injected with rhodamine-labeled tubulin. The dynamic instability behavior of individual microtubules was then examined using low-light-level fluorescence microscopy and quantitative microtubule tracking methods. Both MAP preparations suppressed microtubule dynamics in vivo, by reducing the average rate and extent of both growing and shortening events. The average duration of growing events was not affected. When measured as events/unit time, heat-stable MAPs and MAP-2 did not significantly alter the frequency of rescue; the frequency of catastrophe was decreased approximately two-fold by heat-stable MAPs and MAP-2. When transition frequencies were calculated as events/unit distance, both MAP preparations increased the frequency of rescue, without altering the frequency of catastrophe. The percentage of total time spent in the phases of growth, shrink and pause was determined. Both MAP-2 and heat-stable MAPs decreased the percentage of time spent shortening, increased the percentage of time spent paused, and had no effect on percentage of time spent growing. Heat-stable MAPs increased the average pause duration, decreased the average number of events per minute per microtubule and increased the probability that a paused microtubule would switch to growing rather than shortening. The results demonstrate that addition of MAPs to living cells reduces the dynamic behavior of individual microtubules primarily by suppressing the magnitude of dynamic events and increasing the time spent in pause, where no change in the microtubule length can be detected. The results further suggest that the expression of MAPs directly contributes to cell type-specific microtubule dynamic behavior.


1986 ◽  
Vol 64 (3) ◽  
pp. 238-249 ◽  
Author(s):  
Parvaneh Rafiee ◽  
Sara Ann MacKinlay ◽  
Thomas H. MacRae

Incubation of Artemia cell-free extracts with taxol, followed by centrifugation through sucrose cushions, yielded pellets composed of short, morphologically normal microtubules which exhibited a tendency to fray at their ends. Immunological staining of protein blots with polyclonal or monoclonal antibodies revealed that the major pellet protein is tubulin and that bovine neural tubulin and Artemia tubulin are antigenically distinct. By several criteria, but prinicipally by their taxol-induced coassembly with tubulin, many of the nontubulin pellet proteins are microtubule-associated proteins (MAP). In spite of extensive morphogenesis, hatching, and the eventual resumption of mitosis during development, no new MAP appear, with reduction in the number of MAP after hatching the only observable change in these proteins. We have yet to demonstrate a function for Artemia MAP but have shown that the rate and extent of assembly of Artemia tubulin, which polymerizes readily in vitro in the absence of MAP, are stimulated by bovine MAP. Electrophoretic analysis revealed that the taxol-assembled microtubules were composed of several isotubulins, these being identical to the isoforms in biochemically purified Artemia tubulin. In addition, a new Artemia α-tubulin was observed, and it was shown that the isotubulin population does not change during the period of development examined. Maintenance of identical isotubulin populations in developing organisms for extended periods, which suggests that all tubulins are functional, in concert with the lack of change in tubulin during cell differentiation, runs counter to the proposal that chemically distinct isotubulins are required for assembly of functionally specific microtubules.


1988 ◽  
Vol 106 (4) ◽  
pp. 1205-1211 ◽  
Author(s):  
M Sato ◽  
W H Schwartz ◽  
S C Selden ◽  
T D Pollard

We measured the elasticity and viscosity of brain tubulin solutions under various conditions with a cone and plate rheometer using both oscillatory and steady shearing modes. Microtubules composed of purified tubulin, purified tubulin with taxol and 3x cycled microtubule protein from pig, cow, and chicken behaved as mechanically indistinguishable viscoelastic materials. Microtubules composed of pure tubulin and heat stable microtubule-associated proteins were also similar but did not recover their mechanical properties after shearing like other samples, even after 60 min. All of the other microtubule samples were more rigid after flow orientation, suggesting that the mechanical properties of anisotropic arrays of microtubules may be substantially greater than those of randomly arranged microtubules. These experiments confirm that MAPs do not cross link microtubules. Surprisingly, under conditions where microtubule assembly is strongly inhibited (either 5 degrees or at 37 degrees C with colchicine or Ca++) tubulin was mechanically indistinguishable from microtubules at 10-20 microM concentration. By electron microscopy and ultracentrifugation these samples were devoid of microtubules or other obvious structures. However, these mechanical data are strong evidence that tubulin will spontaneously assemble into alternate structures (aggregates) in nonpolymerizing conditions. Because unpolymerized tubulin is found in significant quantities in the cytoplasm, it may contribute significantly to the viscoelastic properties of cytoplasm, especially at low deformation rates.


FEBS Letters ◽  
1987 ◽  
Vol 226 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Jean-Pierre Brion ◽  
Michael E. Cheetham ◽  
Philip A. Robinson ◽  
Anne-Marie Couck ◽  
Brian H. Anderton

1992 ◽  
Vol 103 (3) ◽  
pp. 665-675 ◽  
Author(s):  
A. Woods ◽  
A.J. Baines ◽  
K. Gull

The main component of the cell body cytoskeleton of Trypanosoma brucei is the highly organised array of stable, subpellicular microtubules on the cytoplasmic face of the plasma membrane. Although several microtubule associated proteins (MAPs) have been shown to be associated with this array, the mechanisms by which individual microtubules interact with one another and with the membrane are still largely undetermined. In this study we have used the T. brucei cytoskeleton as a complex immunogen for the production of monoclonal antibodies to define novel cytoskeletal antigens. Screening by immunofluorescence enabled the selection of an antibody, WCB-1, which detects an antigen associated specifically with the subpellicular microtubules and not with the flagellum microtubules. The antigen (WCB210) was shown to have a relative molecular mass of 210,000 by western blotting. Immunogold studies showed the epitope to be located on the membrane-facing side of the subpellicular cage; it appears to be closely associated with the cross-bridges lying between the microtubules. Unlike many MAPs this protein was shown not to be heat stable and is predicted to be a roughly globular monomer. Even though WCB210 is a very minor component of the cytoskeleton it is heavily phosphorylated. It is possible that this protein is involved in regulation of the subpellicular microtubule crossbridges by interaction with other proteins.


Sign in / Sign up

Export Citation Format

Share Document