scholarly journals Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains.

1988 ◽  
Vol 107 (6) ◽  
pp. 2657-2667 ◽  
Author(s):  
A L Ingold ◽  
S A Cohn ◽  
J M Scholey

We have prepared and characterized seven mouse monoclonal antibodies (SUK 1-7) to the 130-kD heavy chain of sea urchin egg kinesin. On immunoblots, SUK 3 and SUK 4 cross-reacted with Drosophila embryo 116-kD heavy chains, and SUK 4, SUK 5, SUK 6, and SUK 7 bound to the 120-kD heavy chains of bovine brain kinesin. Three out of seven monoclonal antikinesins (SUK 4, SUK 6, and SUK 7) caused a dose-dependent inhibition of sea urchin egg kinesin-induced microtubule translocation, whereas the other four monoclonal antibodies had no detectable effect on this motility. The inhibitory monoclonal antibodies (SUK 4, SUK 6, and SUK 7) appear to bind to spatially related sites on an ATP-sensitive microtubule binding 45-kD chymotryptic fragment of the 130-kD heavy chain, whereas SUK 2 binds to a spatially distinct site. None of the monoclonal antikinesins inhibited the microtubule activated MgATPase activity of kinesin, suggesting that SUK 4, SUK 6, and SUK 7 uncouple this MgATPase activity from motility.

1994 ◽  
Vol 5 (1) ◽  
pp. 57-70 ◽  
Author(s):  
B H Gibbons ◽  
D J Asai ◽  
W J Tang ◽  
T S Hays ◽  
I R Gibbons

Transcripts approximately 14.5 kilobases in length from 14 different genes that encode for dynein heavy chains have been identified in poly(A)+ RNA from sea urchin embryos. Analysis of the changes in level of these dynein transcripts in response to deciliation, together with their sequence relatedness, suggests that 11 or more of these genes encode dynein isoforms that participate in regeneration of external cilia on the embryo, whereas the single gene whose deduced sequence closely resembles that of cytoplasmic dynein in other organisms appears not to be involved in this regeneration. The four consensus motifs for phosphate binding found previously in the beta heavy chain of sea urchin dynein are present in all five additional isoforms for which extended sequences have been obtained, suggesting that these sites play a significant role in dynein function. Sequence analysis of a approximately 400 amino acid region encompassing the putative hydrolytic ATP-binding site shows that the dynein genes fall into at least six distinct classes. Most of these classes in sea urchin have a high degree of sequence identity with one of the dynein heavy chain genes identified in Drosophila, indicating that the radiation of the dynein gene family into the present classes occurred at an early stage in the evolution of eukaryotes. Evolutionary changes in cytoplasmic dynein have been more constrained than those in the axonemal dyneins.


1992 ◽  
Vol 101 (2) ◽  
pp. 291-301 ◽  
Author(s):  
D.G. Cole ◽  
W.Z. Cande ◽  
R.J. Baskin ◽  
D.A. Skoufias ◽  
C.J. Hogan ◽  
...  

To understand the roles of kinesin and its relatives in cell division, it is necessary to identify and characterize multiple members of the kinesin superfamily from mitotic cells. To this end we have raised antisera to peptides corresponding to highly conserved regions of the motor domains of several known members of the kinesin superfamily. These peptide antibodies react specifically with the motor domains of kinesin and ncd protein, as expected, and they also react with several polypeptides (including kinesin heavy chain) that cosediment with microtubules (MTs) precipitated from AMPPNP-treated sea urchin egg cytosol. Subsequent fractionation of ATP eluates of these MTs yields a protein of relative molecular mass 330 × 10(3) that behaves as a complex of three polypeptides that are distinct from conventional kinesin subunits or fragments thereof. This complex contains 85 kDa and 95 kDa polypeptides, which react with our peptide antibodies, and a 115 kDa polypeptide, which does not. This triplet of polypeptides, which we refer to as KRP(85/95), binds to purified sea urchin egg tubulin in an AMPPNP-enhanced, ATP-sensitive manner and induces the formation of microtubule bundles. We therefore propose that the triplet corresponds to a novel sea urchin egg kinesin-related protein.


1994 ◽  
Vol 107 (2) ◽  
pp. 345-351 ◽  
Author(s):  
E. Yokota ◽  
I. Mabuchi

A novel dynein (C/A dynein), which is composed of C and A heavy chains, two intermediate chains and several light chains, was isolated from sea urchin sperm flagella. The C/A dynein was released by the treatment with 0.7 M NaCl plus 5 mM ATP from the axonemes depleted of outer arm 21 S dynein. Sedimentation coefficient of this dynein was estimated by sucrose density gradient centrifugation to be 22–23 S. The C/A dynein particle appeared to be composed of three distinct domains; two globular head domains and one rod domain as seen by negative staining electron microscopy. The mobility of ‘A’ heavy chain of C/A dynein on SDS-gel electrophoresis was similar to that of A heavy chains (A alpha and A beta) of 21 S dynein. However, UV-cleavage patterns of C and A heavy chains of C/A dynein were different from those of A heavy chains of 21 S dynein. Furthermore, an antiserum raised against A heavy chain of C/A dynein did not crossreact with A heavy chains of 21 S dynein. Under the conditions in which the C/A dynein was released, some of inner arms were removed concomitantly from axonemes as observed by electron microscopy. These results suggested that C/A dynein is a component of the inner arms.


1996 ◽  
Vol 184 (6) ◽  
pp. 2251-2260 ◽  
Author(s):  
Robert P. Machold ◽  
Hidde L. Ploegh

Unassembled (free) heavy chains appear during two stages of the class I MHC molecule's existence: immediately after translation but before assembly with peptide and β2-microglobulin, and later, upon disintegration of the heterotrimeric complex. To characterize the structures of folding and degradation intermediates of the class I heavy chain, three monoclonal antibodies have been produced that recognize epitopes along the H-2Kb heavy chain which are obscured upon proper folding and subsequent assembly with β2-microglobulin (KU1: residues 49-54; KU2: residues 23-30; KU4: residues 193-198). The Kb heavy chain is inserted into the lumen of the endoplasmic reticulum in an unfolded state reactive with KU1, KU2, and KU4. Shortly after completion of the polypeptide chain, reactivity with KU1, KU2 and KU4 is lost synchronously, suggesting that folding of the class I heavy chain is a rapid, cooperative process. Perturbation of the folding environment in intact cells with the reducing agent dithiothreitol or the trimming glucosidase inhibitor N-7-oxadecyl-deoxynojirimycin prolongs the presence of mAb-reactive Kb heavy chains. At the cell surface, a pool of free Kb heavy chains appears after 60–120 min of chase, whose subsequent degradation, but not their initial appearance, is impaired in the presence of concanamycin B, an inhibitor of vacuolar acidification. Thus, free heavy chains that arise at the cell surface are destroyed after internalization.


1985 ◽  
Vol 101 (4) ◽  
pp. 1400-1412 ◽  
Author(s):  
W S Sale ◽  
U W Goodenough ◽  
J E Heuser

Outer-arm dynein from the sperm of the sea urchin S. purpuratus was adsorbed to mica flakes and visualized by the quick-freeze, deep-etch technique. Replicas reveal particles comprised of two globular heads joined by two irregularly shaped stems which make contact along their length. One head is pear-shaped (18.5 X 12.5 nm) and the other is spherical (14.5-nm diam). The stems are decorated by a complex of bead-like subunits. The same two-headed protein is found in the 21S dynein-1 fraction of sucrose gradients. The beta-heavy chain/intermediate chain 1 (beta/IC-1) dynein subfraction, produced by low-salt dialysis and zonal centrifugation of the high-salt-extracted dynein-1, contains only single-headed molecules with single stems. These heads are predominantly pear-shaped (18.5 X 12.5 nm). Since 21S dynein-1 contains two heavy chains (alpha and beta), and the beta/IC-1 subfraction is comprised of only the beta-heavy chain (Tang et al., 1982, J. Biol. Chem. 257: 508-515), we conclude that each head is formed by a heavy chain, that the pear-shaped head contains the beta-heavy chain, and that the spherical head contains the alpha-heavy chain. The in situ outer dynein arms of demembranated sperm were also studied by the quick-freeze, deep-etch method. When frozen in reactivation buffer devoid of ATP, each arm consists of a large globular head that attaches to the A-microtubule by distally skewed subunits and attaches to the B-microtubule by a slender stalk. In ATP, this head shifts its orientation such that it can be seen to be constructed from two globular domains. We offer possible correlates between the in situ and the in vitro images, and we compare the structure of sea-urchin dynein with dynein previously described from Chlamydomonas and Tetrahymena.


Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 152-156
Author(s):  
SD Carson ◽  
R Bach ◽  
SM Carson

Two monoclonal antibodies that recognize bovine tissue factor (coagulation factor III) have been obtained following the fusion of hyperimmune mouse spleen cells with NS-1 plasmacytoma cells. Both antibodies, TF1-E2 and TF1-F7, have gamma 1 heavy chains and lambda light chains. TF1-E2 and TF1-F7 have each been used to purify bovine tissue factor from a crude detergent extract of bovine brain by immunoaffinity chromatography. Both antibodies inhibit tissue factor procoagulant activity and block the association of factor VIIa with tissue factor. The association of TF1-F7 and tissue factor solubilized in Triton X-100 was measured under equilibrium conditions. The Kd for this antibody-antigen interaction was 2.1 +/- 0.2 nmol/L. TF1-E2 effectively competes with TF1-F7 for tissue factor binding, indicating that the monoclonal antibodies recognize overlapping sites on the protein. These antibodies will be useful reagents for large-scale purification and for structure-function studies of bovine tissue factor. In particular, since they appear to bind to the same region of the tissue factor molecule as factor VIIa, they will be useful as specific probes for studying the kinetics of tissue factor-initiated coagulation and for immunocytochemical localization of tissue factor in bovine cells.


2021 ◽  
Author(s):  
IVAN VITO FERRARI ◽  
Paolo PATRIZIO

In this work, we have focused on the study of the Basic Local Alignment Search Tool (BLAST) and Multiple Sequence Alignment (Clustal- X) of different monoclonal mice antibodies to understand better the multiple alignments of sequences. Our strategy was to compare the light chains of multiple monoclonal antibodies to each other, calculating their identity percentage and in which amino acid portion. (See below figure 2) Subsequently, the same survey of heavy chains was carried out with the same methodology. (See below figure 3) Finally, sequence alignment between the light chain of one antibody and the heavy chain of another antibody was studied to understand what happens if chains are exchanged between antibodies. (See below figure 4) From our results of BLAST estimation alignment, we have reported that the Light Chains (Ls) of Monoclonal Antibodies in Comparison have a sequence Homology of about 60-80% and they have a part identical in sequence zone in range 100-210 residues amino acids, except ID PDB 4ISV, which it turns out to have a 40% lower homology than the others antibodies. As far as, the heavy chains (Hs) of Monoclonal Antibodies are concerned, however they tend to have a less homology of sequences, compared to lights chains consideration, equal to 60%-70% and they have an identical part in the sequence zone between 150-210 residues amino acids; with the exception of ID PDB 3I9G-3W9D antibodies that have an equal homology at 50%. ( See supporting part) Summing up: about 70-80% identity among 2 light chains of 2 antibodies, 60-70% identity between 2 heavy chains of 2 antibodies, 30% identity between the two chains of a antibody and 30% if you compare the light chain of one antibody with the heavy chain of another antibody.


1988 ◽  
Vol 106 (5) ◽  
pp. 1607-1614 ◽  
Author(s):  
G Mocz ◽  
W J Tang ◽  
I R Gibbons

NH2-terminal analysis of the alpha and beta heavy chain polypeptides (Mr greater than 400,000) from the outer arm dynein of sea urchin sperm flagella, compared with that of the 230,000- and 200,000-Mr peptides formed upon photocleavage of dynein by irradiation at 365 nm in the presence of vanadate and ATP, shows that the NH2 termini of the intact chains are acetylated and that the 230,000- and 200,000 Mr peptides constitute the amino- and carboxy-terminal portions of the heavy chains, respectively. Tryptic digestion of the beta heavy chain is known to separate it into two particles, termed fragments A and B, that sediment at 12S and 6S (Ow, R. A., W.-J. Y. Tang, G. Mocz, and I. R. Gibbons, 1987. J. Biol. Chem. 262:3409-3414). Immunoblots against monoclonal antibodies specific for epitopes on the beta heavy chain, used in conjunction with photoaffinity labeling, show that the ATPase-containing fragment A is derived from the amino-terminal region of the beta chain, with the two photolytic sites thought to be associated with the purine-binding and the gamma-phosphate-binding areas of the ATP-binding site spanning an approximately 100,000 Mr region near the middle of the intact beta chain. Fragment B is derived from the complementary carboxy-terminal region of the beta chain.


Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 152-156 ◽  
Author(s):  
SD Carson ◽  
R Bach ◽  
SM Carson

Abstract Two monoclonal antibodies that recognize bovine tissue factor (coagulation factor III) have been obtained following the fusion of hyperimmune mouse spleen cells with NS-1 plasmacytoma cells. Both antibodies, TF1-E2 and TF1-F7, have gamma 1 heavy chains and lambda light chains. TF1-E2 and TF1-F7 have each been used to purify bovine tissue factor from a crude detergent extract of bovine brain by immunoaffinity chromatography. Both antibodies inhibit tissue factor procoagulant activity and block the association of factor VIIa with tissue factor. The association of TF1-F7 and tissue factor solubilized in Triton X-100 was measured under equilibrium conditions. The Kd for this antibody-antigen interaction was 2.1 +/- 0.2 nmol/L. TF1-E2 effectively competes with TF1-F7 for tissue factor binding, indicating that the monoclonal antibodies recognize overlapping sites on the protein. These antibodies will be useful reagents for large-scale purification and for structure-function studies of bovine tissue factor. In particular, since they appear to bind to the same region of the tissue factor molecule as factor VIIa, they will be useful as specific probes for studying the kinetics of tissue factor-initiated coagulation and for immunocytochemical localization of tissue factor in bovine cells.


Sign in / Sign up

Export Citation Format

Share Document