scholarly journals Cytoskeletal architecture of isolated mitotic spindle with special reference to microtubule-associated proteins and cytoplasmic dynein.

1985 ◽  
Vol 101 (5) ◽  
pp. 1858-1870 ◽  
Author(s):  
N Hirokawa ◽  
R Takemura ◽  
S Hisanaga

We have studied cytoskeletal architectures of isolated mitotic apparatus from sea urchin eggs using quick-freeze, deep-etch electron microscopy. This method revealed the existence of an extensive three-dimensional network of straight and branching crossbridges between spindle microtubules. The surface of the spindle microtubules was almost entirely covered with hexagonally packed, small, round button-like structures which were very uniform in shape and size (approximately 8 nm in diameter), and these microtubule buttons frequently provided bases for crossbridges between adjacent microtubules. These structures were removed from the surface of microtubules by high salt (0.6 M NaCl) extraction. Microtubule-associated proteins (MAPs) and microtubules isolated from mitotic spindles which were mainly composed of a large amount of 75-kD protein and some high molecular mass (250 kD, 245 kD) proteins were polymerized in vitro and examined by quick-freeze, deep-etch electron microscopy. The surfaces of microtubules were entirely covered with the same hexagonally packed round buttons, the arrangement of which is intimately related to that of tubulin dimers. Short crossbridges and some longer crossbridges were also observed. High salt treatment (0.6 M NaCl) extracted both 75-kD protein and high molecular weight proteins and removed microtubule buttons and most of crossbridges from the surface of microtubules. Considering the relatively high amount of 75-kD protein among MAPs isolated from mitotic spindles, it is concluded that these microtubule buttons probably consist of 75-kD MAP and that some of the crossbridges in vivo could belong to MAPs. Another kind of granule, larger in size (11-26 nm in diameter), was also on occasion associated with the surface of microtubules of mitotic spindles. A fine sidearm sometimes connected the larger granule to adjacent microtubules. Localization of cytoplasmic dynein ATPase in the mitotic spindle was investigated by electron microscopic immunocytochemistry with a monoclonal antibody (D57) against sea urchin sperm flagellar 21S dynein and colloidal gold-labeled second antibody. Immunogold particles were closely associated with spindle microtubules. 76% of these were within 50 nm and 55% were within 20 nm from the surface of the microtubules. These gold particles were sporadically found on both polar and kinetochore microtubules of half-spindles at both metaphase and anaphase. They localized also on the microtubules between sister chromatids in late anaphase. These data indicate that cytoplasmic dynein is attached to the microtubules in sea urchin mitotic spindles.(ABSTRACT TRUNCATED AT 400 WORDS)

Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


1983 ◽  
Vol 96 (2) ◽  
pp. 424-434 ◽  
Author(s):  
J G Izant ◽  
J A Weatherbee ◽  
J R McIntosh

Microtubule-associated proteins (MAPs) that copurify with tubulin through multiple cycles of in vitro assembly have been implicated as regulatory factors and effectors in the in vivo activity of microtubules. As an approach to the analysis of the functions of these molecules, a collection of lymphocyte hybridoma monoclonal antibodies has been generated using MAPs from HeLa cell microtubule protein as antigen. Two of the hybridoma clones secrete IgGs that bind to distinct sites on what appears to be a 200,000-dalton polypeptide. Both immunoglobulin preparations stain interphase and mitotic apparatus microtubules in cultured human cells. One of the clones (N-3B4.3.10) secretes antibody that reacts only with cells of human origin, while antibody from the other hybridoma (N-2B5.11.2) cross-reacts with BSC and PtK1 cells, but not with 3T3 cells. In PtK1 cells the N-2B5 antigen is associated with the microtubules of the mitotic apparatus, but there is no staining of the interphase microtubule array; rather, the antibody stains an ill-defined juxtanuclear structure. Further, neither antibody stains vinblastine crystals in either human or marsupial cells at any stage of the cell cycle. N-2B5 antibody microinjected into living PtK1 cells binds to the mitotic spindle, but does not cause a rapid dissolution of either mitotic or interphase microtubule structures. When injected before the onset of anaphase, however, the N-2B5 antibody inhibits proper chromosome partition in mitotic PtK1 cells. N-2B5 antibody injected into interphase cells causes a redistribution of MAP antigen onto the microtubule network.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1859
Author(s):  
Sylvia Fenosoa Rasamizafy ◽  
Claude Delsert ◽  
Gabriel Rabeharivelo ◽  
Julien Cau ◽  
Nathalie Morin ◽  
...  

Tubulin post-translational modifications regulate microtubule properties and functions. Mitotic spindle microtubules are highly modified. While tubulin detyrosination promotes proper mitotic progression by recruiting specific microtubule-associated proteins motors, tubulin acetylation that occurs on specific microtubule subsets during mitosis is less well understood. Here, we show that siRNA-mediated depletion of the tubulin acetyltransferase ATAT1 in epithelial cells leads to a prolonged prometaphase arrest and the formation of monopolar spindles. This results from collapse of bipolar spindles, as previously described in cells deficient for the mitotic kinase PLK1. ATAT1-depleted mitotic cells have defective recruitment of PLK1 to centrosomes, defects in centrosome maturation and thus microtubule nucleation, as well as labile microtubule-kinetochore attachments. Spindle bipolarity could be restored, in the absence of ATAT1, by stabilizing microtubule plus-ends or by increasing PLK1 activity at centrosomes, demonstrating that the phenotype is not just a consequence of lack of K-fiber stability. We propose that microtubule acetylation of K-fibers is required for a recently evidenced cross talk between centrosomes and kinetochores.


1980 ◽  
Vol 86 (2) ◽  
pp. 355-365 ◽  
Author(s):  
E D Salmon ◽  
R R Segall

We isolated calcium-labile mitotic spindles from eggs of the sea urchin Lytechinus variegatus, using a low ionic strength, EGTA lysis buffer that contined 5.0 mM EGTA, 0.5 mM MgCl2, 10-50 mM PIPES, pH 6.8, with 1% Nonidet P-40 (detergent) and 20-25% glycerol. Isolated spindles were stored in EGTA buffer with 50% glycerol for 5-6 wk without deterioration. The isolated spindles were composed primarily of microtubules with the chromosomes attached. No membranes were seen. Isolated spindles, perfused with EGTA buffer to remove the detergent and glycerol, had essentially the same birefringent retardation (BR) as spindles in vivo at the same mitotic stage. Even in the absence of glycerol and exogenous tubulin, the isolated spindles were relatively stable in the EGTA buffer: BR decayed slowly to about half the initial value within 30-45 min. However, both the rate and extent of BR decay increased with concentrations of Ca2+ above 0.2-0.5 muM as assayed using Ca-EGTA buffers (0.2 mM EGTA, 0.5 mM MgCl2, 50 mM PIPES, pH 6.8, plus various amounts of CaCl2). Microtubules depolymerized almost completely in < 6 min at Ca2+ concentrations of 2 muM and within several seconds at 10 muM Ca2+. Of several divalent cations tested, only Sr2+ caused comparable changes in BR. The absence of membranes in the isolated spindles appeared to be associated with a lack of calcium-sequestering ability. Our results suggest that calcium ions play an important role in the depolymerization of spindle microtubules and that membrane components may function within the mitotic apparatus of living cells to sequester and release calcium ions during mitosis.


2021 ◽  
Author(s):  
Angela Flavia Serpico ◽  
Francesco Febbraro ◽  
Caterina Pisauro ◽  
Domenico Grieco

During cell division, dramatic microtubular rearrangements driven by cyclin B-cdk1 (Cdk1) kinase activity mark mitosis onset leading to interphase cytoskeleton dissolution and mitotic spindle assembly. Once activated by Cdc25, that reverses inhibitory phosphorylation operated by Wee1/Myt1, Cdk1 clears the cytoplasm from microtubules by inhibiting microtubule associated proteins (MAPs) with microtubule growth-promoting properties. Nevertheless, some of these MAPs are required for spindle assembly, creating quite a conundrum. We show here that a Cdk1 fraction bound to spindle structures escaped Cdc25 action and remained inhibited by phosphorylation (i-Cdk1) in mitotic human cells. Loss or restoration of i-Cdk1 inhibited or promoted spindle assembly, respectively. Furthermore, polymerizing spindle microtubules fostered i-Cdk1 by aggregating with Wee1 and excluding Cdc25. Our data reveal that spindle assembly relies on compartimentalized control of Cdk1 activity.


Author(s):  
Richard B. Vallee

Microtubules are involved in a number of forms of intracellular motility, including mitosis and bidirectional organelle transport. Purified microtubules from brain and other sources contain tubulin and a diversity of microtubule associated proteins (MAPs). Some of the high molecular weight MAPs - MAP 1A, 1B, 2A, and 2B - are long, fibrous molecules that serve as structural components of the cytamatrix. Three MAPs have recently been identified that show microtubule activated ATPase activity and produce force in association with microtubules. These proteins - kinesin, cytoplasmic dynein, and dynamin - are referred to as cytoplasmic motors. The latter two will be the subject of this talk.Cytoplasmic dynein was first identified as one of the high molecular weight brain MAPs, MAP 1C. It was determined to be structurally equivalent to ciliary and flagellar dynein, and to produce force toward the minus ends of microtubules, opposite to kinesin.


2019 ◽  
Vol 2 (1) ◽  
pp. e201800169 ◽  
Author(s):  
Heidi LH Malaby ◽  
Dominique V Lessard ◽  
Christopher L Berger ◽  
Jason Stumpff

KIF18A (kinesin-8) is required for mammalian mitotic chromosome alignment. KIF18A confines chromosome movement to the mitotic spindle equator by accumulating at the plus-ends of kinetochore microtubule bundles (K-fibers), where it functions to suppress K-fiber dynamics. It is not understood how the motor accumulates at K-fiber plus-ends, a difficult feat requiring the motor to navigate protein dense microtubule tracks. Our data indicate that KIF18A's relatively long neck linker is required for the motor's accumulation at K-fiber plus-ends. Shorter neck linker (sNL) variants of KIF18A display a deficiency in accumulation at the ends of K-fibers at the center of the spindle. Depletion of K-fiber–binding proteins reduces the KIF18A sNL localization defect, whereas their overexpression reduces wild-type KIF18A's ability to accumulate on this same K-fiber subset. Furthermore, single-molecule assays indicate that KIF18A sNL motors are less proficient in navigating microtubules coated with microtubule-associated proteins. Taken together, these results support a model in which KIF18A's neck linker length permits efficient navigation of obstacles to reach K-fiber ends during mitosis.


2004 ◽  
Vol 78 (18) ◽  
pp. 10122-10132 ◽  
Author(s):  
Samir A. Kelkar ◽  
K. Kevin Pfister ◽  
Ronald G. Crystal ◽  
Philip L. Leopold

ABSTRACT During infection, adenovirus (Ad) capsids undergo microtubule-dependent retrograde transport as part of a program of vectorial transport of the viral genome to the nucleus. The microtubule-associated molecular motor, cytoplasmic dynein, has been implicated in the retrograde movement of Ad. We hypothesized that cytoplasmic dynein constituted the primary mode of association of Ad with microtubules. To evaluate this hypothesis, an Ad-microtubule binding assay was established in which microtubules were polymerized with taxol, combined with Ad in the presence or absence of microtubule-associated proteins (MAPs), and centrifuged through a glycerol cushion. The addition of purified bovine brain MAPs increased the fraction of Ad in the microtubule pellet from 17.3% ± 3.5% to 80.7% ± 3.8% (P < 0.01). In the absence of tubulin polymerization or in the presence of high salt, no Ad was found in the pellet. Ad binding to microtubules was not enhanced by bovine brain MAPs enriched for tau protein or by the addition of bovine serum albumin. Enhanced Ad-microtubule binding was also observed by using a fraction of MAPs purified from lung A549 epithelial cell lysate which contained cytoplasmic dynein. Ad-microtubule interaction was sensitive to the addition of ATP, a hallmark of cytoplasmic dynein-dependent microtubule interactions. Immunodepletion of cytoplasmic dynein from the A549 cell lysate abolished the MAP-enhanced Ad-microtubule binding. The interaction of Ad with both dynein and dynactin complexes was demonstrated by coimmunoprecipitation. Partially uncoated capsids isolated from cells 40 min after infection also exhibited microtubule binding. In summary, the primary mode of Ad attachment to microtubules occurs though cytoplasmic dynein-mediated binding.


Sign in / Sign up

Export Citation Format

Share Document