scholarly journals Recombination involving transposable elements: role of target molecule replication in Tn1 delta Ap-mediated replicon fusion.

1983 ◽  
Vol 80 (8) ◽  
pp. 2314-2317 ◽  
Author(s):  
C. J. Muster ◽  
J. A. Shapiro ◽  
L. A. MacHattie
2019 ◽  
Author(s):  
Michelle C. Stitzer ◽  
Sarah N. Anderson ◽  
Nathan M. Springer ◽  
Jeffrey Ross-Ibarra

Transposable elements (TEs) constitute the majority of flowering plant DNA, reflecting their tremendous success in subverting, avoiding, and surviving the defenses of their host genomes to ensure their selfish replication. More than 85% of the sequence of the maize genome can be ascribed to past transposition, providing a major contribution to the structure of the genome. Evidence from individual loci has informed our understanding of how transposition has shaped the genome, and a number of individual TE insertions have been causally linked to dramatic phenotypic changes. But genome-wide analyses in maize and other taxa have frequently represented TEs as a relatively homogeneous class of fragmentary relics of past transposition, obscuring their evolutionary history and interaction with their host genome. Using an updated annotation of structurally intact TEs in the maize reference genome, we investigate the family-level ecological and evolutionary dynamics of TEs in maize. Integrating a variety of data, from descriptors of individual TEs like coding capacity, expression, and methylation, as well as similar features of the sequence they inserted into, we model the relationship between these attributes of the genomic environment and the survival of TE copies and families. Our analyses reveal a diversity of ecological strategies of TE families, each representing the evolution of a distinct ecological niche allowing survival of the TE family. In contrast to the wholesale relegation of all TEs to a single category of junk DNA, these differences generate a rich ecology of the genome, suggesting families of TEs that coexist in time and space compete and cooperate with each other. We conclude that while the impact of transposition is highly family- and context-dependent, a family-level understanding of the ecology of TEs in the genome can refine our ability to predict the role of TEs in generating genetic and phenotypic diversity.‘Lumping our beautiful collection of transposons into a single category is a crime’-Michael R. Freeling, Mar. 10, 2017


2019 ◽  
Author(s):  
Sarah N Anderson ◽  
Michelle C Stitzer ◽  
Alex B. Brohammer ◽  
Peng Zhou ◽  
Jaclyn M Noshay ◽  
...  

AbstractTransposable elements (TEs) are ubiquitous components of eukaryotic genomes and can create variation in genomic organization. The majority of maize genomes are composed of TEs. We developed an approach to define shared and variable TE insertions across genome assemblies and applied this method to four maize genomes (B73, W22, Mo17, and PH207). Among these genomes we identified 1.6 Gb of variable TE sequence representing a combination of recent TE movement and deletion of previously existing TEs. Although recent TE movement only accounted for a portion of the TE variability, we identified 4,737 TEs unique to one genome with defined insertion sites in all other genomes. Variable TEs are found for all superfamilies and are distributed across the genome, including in regions of recent shared ancestry among individuals. There are 2,380 genes annotated in the B73 genome located within variable TEs, providing evidence for the role of TEs in contributing to the substantial differences in gene content among these genotypes. The large scope of TE variation present in this limited sample of temperate maize genomes highlights the major contribution of TEs in driving variation in genome organization and gene content.Significance StatementThe majority of the maize genome is comprised of transposable elements (TEs) that have the potential to create genomic variation within species. We developed a method to identify shared and non-shared TEs using whole genome assemblies of four maize inbred lines. Variable TEs are found throughout the maize genome and in comparisons of any two genomes we find ~20% of the genome is due to non-shared TEs. Several thousand maize genes are found within TEs that are variable across lines, highlighting the contribution of TEs to gene content variation. This study creates a comprehensive resource for genomic studies of TE variability among four maize genomes, which will enable studies on the consequences of variable TEs on genome function.


2020 ◽  
Vol 57 ◽  
pp. 100995 ◽  
Author(s):  
Davide Andrenacci ◽  
Valeria Cavaliere ◽  
Giovanna Lattanzi

Biology ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 25 ◽  
Author(s):  
Roberta Moschetti ◽  
Antonio Palazzo ◽  
Patrizio Lorusso ◽  
Luigi Viggiano ◽  
René Massimiliano Marsano

Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome’s structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE–host interactions in any complex eukaryotic genome.


Sign in / Sign up

Export Citation Format

Share Document