scholarly journals Functional role of HLA class I cell-surface molecules in human T-lymphocyte activation and proliferation.

1986 ◽  
Vol 83 (12) ◽  
pp. 4446-4450 ◽  
Author(s):  
D. S. Taylor ◽  
P. C. Nowell ◽  
J. Kornbluth
Author(s):  
Alan M. Krensky ◽  
Steven J. Mentzer ◽  
Julia L. Greenstein ◽  
Mary Crimmins ◽  
Carol Clayberger ◽  
...  

2020 ◽  
pp. 1-14
Author(s):  
I. Spacova ◽  
C. O’Neill ◽  
S. Lebeer

Beneficial bacteria represent an emerging tool against topical diseases, including infection caused by Staphylococcus aureus. Here, we investigated several anti-pathogenic mechanisms of the model probiotic Lacticaseibacillus rhamnosus GG against a clinical S. aureus isolate by implementing various mutants lacking important cell surface molecules. We analysed adhesion of L. rhamnosus and competitive adhesion with S. aureus to primary human keratinocytes, L. rhamnosus and S. aureus auto- and co-aggregation, S. aureus growth inhibition, keratinocyte viability increase, and monocyte Toll-like receptor (TLR) activation by L. rhamnosus as such, or with S. aureus. L. rhamnosus mutated in SpaCBA pili exhibited reduced adhesion to keratinocytes, reduced ability to prevent S. aureus adhesion to keratinocytes and reduced co-aggregation with S. aureus. Mutants in cell wall exopolysaccharides showed enhanced adhesion to keratinocytes and TLR activation in monocytes, suggesting involvement of additional cell surface molecules masked by exopolysaccharides. All L. rhamnosus strains inhibited S. aureus growth, likely due to acidification of the medium. Live (but not UV-inactivated) L. rhamnosus significantly reduced inflammatory TLR activation in monocytes by S. aureus. These data suggest the key role of SpaCBA pili and additional contribution of other cell surface molecules as well as secreted components of L. rhamnosus GG in the multifactorial inhibition of S. aureus adhesion and toxicity in the skin niche.


1988 ◽  
Vol 8 (4) ◽  
pp. 389-399 ◽  
Author(s):  
Gerald A. Schwarting ◽  
Anna Gajewski

In order to better understand the role of cell surface glycolipids in T lymphocyte activation, heparin was used to simultaneously modulate the expression of glycolipids and the lytic capacity of lymphocytes activated by interleukin-2. Results presented here show that heparin added at the start of a 3 day culture inhibited the formation of lymphokine activated killer cells by up to 50%. Heparin also has a profound effect on the synthesis of glycolipids during this three day period. Asialo GM1, a useful cell surface marker for subsets of murine cytotoxic cells, is reduced in amount, as are the other two major neutral glycolipids lactosylceramide and asialo GM2. In addition, the synthesis of some gangliosides is affected by heparin treatment. Comparison of the glycosyltrasferase activities of untreated and heparin-treated cells shows that the activities of a 2–3-sialyltransferase and a β1–3 galactosyltransferase are inhibited dramatically, while a third enzyme, N-acetyl-galactosaminyltransferase is unaffected. The two heparin inhibitable enzymes bind to heparin affinity columns but the galactosaminyltransferase does not. These studies suggest that the proper regulation of the activities of specific glycosyltransferases may be important events in lymphocyte activation.


Sign in / Sign up

Export Citation Format

Share Document