adenoviral transduction
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 3)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 92
Author(s):  
Astrid Strack ◽  
Andrea Deinzer ◽  
Christian Thirion ◽  
Silke Schrödel ◽  
Jan Dörrie ◽  
...  

Due to their ability to trigger strong immune responses, adenoviruses (HAdVs) in general and the serotype5 (HAdV-5) in particular are amongst the most popular viral vectors in research and clinical application. However, efficient transduction using HAdV-5 is predominantly achieved in coxsackie and adenovirus receptor (CAR)-positive cells. In the present study, we used the transduction enhancer LentiBOOST® comprising the polycationic Polybrene to overcome these limitations. Using LentiBOOST®/Polybrene, we yielded transduction rates higher than 50% in murine bone marrow-derived dendritic cells (BMDCs), while maintaining their cytokine expression profile and their capability to induce T-cell proliferation. In human dendritic cells (DCs), we increased the transduction rate from 22% in immature (i)DCs or 43% in mature (m)DCs to more than 80%, without inducing cytotoxicity. While expression of specific maturation markers was slightly upregulated using LentiBOOST®/Polybrene on iDCs, no effect on mDC phenotype or function was observed. Moreover, we achieved efficient HAdV5 transduction also in human monocytes and were able to subsequently differentiate them into proper iDCs and functional mDCs. In summary, we introduce LentiBOOST® comprising Polybrene as a highly potent adenoviral transduction agent for new in-vitro applications in a set of different immune cells in both mice and humans.


2021 ◽  
Author(s):  
Qian Cai ◽  
Jia Ma ◽  
Jing Wang ◽  
Juying Wang ◽  
Jieda Cui ◽  
...  

2021 ◽  
Author(s):  
Astrid Strack ◽  
Andrea Deinzer ◽  
Christian Thirion ◽  
Silke Schrödel ◽  
Jan Dörrie ◽  
...  

Abstract Due to their ability to trigger strong immune responses, adenoviruses (HAdVs) in general and the serotype5 (HAdV5) in particular are amongst the most popular viral vectors in research and clinical application. However, efficient transduction using HAdV5 is predominantly achieved in coxsackie and adenovirus receptor (CAR)-positive human cells. In the present study, we used the transduction enhancer LentiBOOST® comprising the polycationic Polybrene to overcome these limitations. Using LentiBOOST®/ Polybrene, we yielded transduction rates higher than 50% in murine bone marrow derived dendritic cells (BMDCs), while maintaining their cytokine expression profile and their capability to induce T-cell proliferation. In human dendritic cells (DCs), we increased the transduction rate from 22% in immature (i)DCs or 43% in mature (m)DCs to more than 80%, without inducing cytotoxicity. While expression of specific maturation markers was slightly upregulated using LentiBOOST®/ Polybrene on iDCs, no effect on mDC phenotype or function was observed. Moreover, we achieved efficient HAdV5 transduction also in human monocytes and were able to subsequently differentiate them into proper iDCs and functional mDCs. In summary, we introduce LentiBOOST® comprising Polybrene as a highly potent adenoviral transduction agent for new in vitro applications in a set of different immune cells in both mice and humans.


2021 ◽  
Vol 8 (3) ◽  
pp. e151
Author(s):  
Alexander L. Kolb ◽  
Marinaliz Reynoso ◽  
Ronald W. Matheny

Genomic manipulation offers the possibility for novel therapies in lieu of medical interventions in use today. The ability togenetically restore missing inflammatory genes will have a monumental impact on our current immunotherapy treatments. This study compared the efficacy of two different genetic manipulation techniques: clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) transfection to adenoviral transduction to determine which method would provide the most transient and stable knockdown of myeloid differentiation primary response 88 (MyD88). MyD88 is a major regulator of nuclear factor kappa light chain enhancer of activated B cells (NFκB) pathway in Raw 264.7 macrophages. Following genetic manipulation, cells were treated for 24 h with Lipopolysaccharide (LPS) to stimulate the inflammatory pathway. Confirmation of knockdown was determined by western immunoblotting and quantification of band density. Both CRISPR/Cas9 and adenoviral transduction produced similar knockdown efficiency (~64% and 60%, respectively) in MyD88 protein 48 h post adenoviral transduction. NFκB phosphorylation was increased in CRISPR/Cas9-mediated MyD88 knockdown and control cells, but not in adenovirus-mediated MyD88 knockdown cells, following LPS administration. CRISPR/Cas9-mediated MyD88 knockdown macrophages treated with LPS for 24 h showed a 65% reduction in tumor necrosis factor alpha (TNFα) secretion, and a 67% reduction in interleukin-10 (IL-10) secretion when compared to LPS-stimulated control cells (P ≤ 0.01 for both). LPS did not stimulate TNFα or IL-10 secretion in adenovirus-mediated control or MyD88 knockdown cells. These data demonstrate that Raw 264.7 macrophages maintain responsiveness to inflammatory stimuli following CRISPR/Cas9-mediated reductions in MyD88, but not following adenovirus-mediated MyD88 knockdown.


Vaccine ◽  
2021 ◽  
Author(s):  
Michiko Fukuda ◽  
Jutaro Nakamura ◽  
Saori Ito ◽  
Kenji Kawazoe ◽  
Yoshitaka Miyanaga ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alaín González Pose ◽  
Raquel Montesino Seguí ◽  
Rafael Maura Pérez ◽  
Florence Hugues Salazar ◽  
Ignacio Cabezas Ávila ◽  
...  

Abstract Introduction Proper conformational arrangement of the E2 molecules of bovine viral diarrhoea-mucosal disease virus (BVD-MDV) is crucial to obtain an effective recombinant vaccine candidate against the disease. In this study, we characterised a new molecule composed of two distinct sequences of the E2 glycoprotein of BVD-MDV and the Fc fragment of human immunoglobulin (BVDE2Fc). Materials and Methods The chimaeric protein was expressed in mammalian cell lines of different species by adenoviral transduction and purified by immobilised metal-affinity chromatography. The N-glycans were profiled by HPLC, and the BVDE2Fc immunogenicity was assessed in male mice. The antigen-antibody reactions were evaluated by ELISA. Results The MDBK cell line was selected from among five for the final production of BVDE2Fc. After purification to over 90%, the N-glycan profile showed neutral and complex oligosaccharides. The mouse immunisation induced a strong humoral response, which produced antibodies able to attach to conformational epitopes on E2 molecules, while the Fc fragment barely contributed to the immune response. Additionally, BVDE2Fc attached to antibodies from bovine sera positive to distinct BVD-MDV subtypes, whereas the loss of BVDE2Fc structure during the deglycosylation process considerably diminished those interactions. Conclusion These results demonstrate that the structure of E2 molecules arranged in tandem and attached to an Fc fragment could represent a viable design for future vaccine candidates against BVD-MD.


2021 ◽  
Vol 22 (2) ◽  
pp. 598
Author(s):  
Madalina Dumitrescu ◽  
Ana Maria Vacaru ◽  
Violeta Georgeta Trusca ◽  
Ioana Madalina Fenyo ◽  
Radu Ionita ◽  
...  

Adenoviral vectors are important vehicles for delivering therapeutic genes into mammalian cells. However, the yield of the adenoviral transduction of murine mesenchymal stromal cells (MSC) is low. Here, we aimed to improve the adenoviral transduction efficiency of bone marrow-derived MSC. Our data showed that among all the potential transduction boosters that we tested, the K2 Transfection System (K2TS) greatly increased the transduction efficiency. After optimization of both K2TS components, the yield of the adenoviral transduction increased from 18% to 96% for non-obese diabetic (NOD)-derived MSC, from 30% to 86% for C57BL/6-derived MSC, and from 0.6% to 63% for BALB/c-derived MSC, when 250 transduction units/cell were used. We found that MSC derived from these mouse strains expressed different levels of the coxsackievirus and adenovirus receptors (MSC from C57BL/6≥NOD>>>BALB/c). K2TS did not increase the level of the receptor expression, but desensitized the cells to foreign DNA and facilitated the virus entry into the cell. The expression of Stem cells antigen-1 (Sca-1) and 5′-nucleotidase (CD73) MSC markers, the adipogenic and osteogenic differentiation potential, and the immunosuppressive capacity were preserved after the adenoviral transduction of MSC in the presence of the K2TS. In conclusion, K2TS significantly enhanced the adenoviral transduction of MSC, without interfering with their main characteristics and properties.


2020 ◽  
Vol 22 (1) ◽  
pp. 348
Author(s):  
Ana-Maria Vacaru ◽  
Madalina Dumitrescu ◽  
Andrei Mircea Vacaru ◽  
Ioana Madalina Fenyo ◽  
Radu Ionita ◽  
...  

Mesenchymal stromal cells (MSC) display several mechanisms of action that may be harnessed for therapeutic purposes. One of their most attractive features is their immunomodulatory activity that has been extensively characterized both in vitro and in vivo. While this activity has proven to be very efficient, it is transient. We aimed to enhance it by transforming MSC to overexpress a first apoptosis signal (Fas) ligand (FasL). In this study, our goal was to induce FasL overexpression through adenoviral transduction in MSC to improve their immunomodulatory activity. We characterized the impact of FasL overexpression on the morphology, proliferation, viability, phenotype, multilineage differentiation potential and immunomodulation of MSC. Moreover, we determined their suppressive properties in mixed reactions with A20 cells, as well as with stimulated splenocytes. Our findings demonstrate that FasL-overexpressing MSC exhibit improved immunosuppressive properties, while maintaining their MSC-characteristic features. In conclusion, we establish, in a proof-of-concept set-up, that FasL-overexpressing MSC represent good candidates for therapeutic intervention targeted at autoimmune disorders.


Sign in / Sign up

Export Citation Format

Share Document