scholarly journals Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation.

1992 ◽  
Vol 89 (21) ◽  
pp. 10306-10310 ◽  
Author(s):  
J. J. O'Shea ◽  
D. W. McVicar ◽  
T. L. Bailey ◽  
C. Burns ◽  
M. J. Smyth
Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3901-3908 ◽  
Author(s):  
Subburaj Ilangumaran ◽  
Anne Briol ◽  
Daniel C. Hoessli

CD44 is the major cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan and is implicated in a variety of biological events that include embryonic morphogenesis, lymphocyte recirculation, inflammation, and tumor metastasis. CD44 delivers activation signals to T lymphocytes, B lymphocytes, natural killer cells, polymorphonuclear leukocytes, and macrophages by stimulating protein tyrosine phosphorylation and calcium influx. The mechanism of signal transduction via CD44 remains undefined, although CD44 was shown to physically associate with intracellular protein tyrosine kinase Lck in T lymphocytes. In the present report, we show that a significant proportion of CD44 in human peripheral blood T lymphocytes and endothelial cells is associated with low-density plasma membrane fractions that represent specialized plasma membrane domains enriched in glycosphingolipids and glycosylphosphatidylinositol (GPI)-anchored proteins. CD44 and the GPI-anchored CD59 do not appear to directly interact in the low-density membrane fractions. In human peripheral blood T lymphocytes, 20% to 30% of the Src family protein tyrosine kinases, Lck and Fyn, are recovered from these fractions. CD44-associated protein kinase activity was selectively recovered from the low-density membrane fractions, corresponding to glycosphingolipid-rich plasma membrane microdomains. Reprecipitation of the in vitro phosphorylated proteins showed that CD44 associates not only with Lck but also with Fyn kinase in these membrane domains. Our results suggest that cellular stimulation via CD44 may proceed through the signaling machinery of glycosphingolipid-enriched plasma membrane microdomains and, hence, depend on the functional integrity of such domains.


1999 ◽  
Vol 31 (1-2) ◽  
pp. 785 ◽  
Author(s):  
M.M Hamawy ◽  
M Tsuchida ◽  
J.H Fechner ◽  
E Manthei ◽  
S.J Knechtle

1997 ◽  
Vol 27 (5) ◽  
pp. 1254-1259 ◽  
Author(s):  
Anwarul A. Akhand ◽  
Meiyi Pu ◽  
Jun Du ◽  
Masashi Kato ◽  
Haruhiko Suzuki ◽  
...  

Data in Brief ◽  
2015 ◽  
Vol 5 ◽  
pp. 53-58 ◽  
Author(s):  
Nerea Osinalde ◽  
Virginia Sánchez-Quiles ◽  
Vyacheslav Akimov ◽  
Blagoy Blagoev ◽  
Irina Kratchmarova

Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3901-3908 ◽  
Author(s):  
Subburaj Ilangumaran ◽  
Anne Briol ◽  
Daniel C. Hoessli

Abstract CD44 is the major cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan and is implicated in a variety of biological events that include embryonic morphogenesis, lymphocyte recirculation, inflammation, and tumor metastasis. CD44 delivers activation signals to T lymphocytes, B lymphocytes, natural killer cells, polymorphonuclear leukocytes, and macrophages by stimulating protein tyrosine phosphorylation and calcium influx. The mechanism of signal transduction via CD44 remains undefined, although CD44 was shown to physically associate with intracellular protein tyrosine kinase Lck in T lymphocytes. In the present report, we show that a significant proportion of CD44 in human peripheral blood T lymphocytes and endothelial cells is associated with low-density plasma membrane fractions that represent specialized plasma membrane domains enriched in glycosphingolipids and glycosylphosphatidylinositol (GPI)-anchored proteins. CD44 and the GPI-anchored CD59 do not appear to directly interact in the low-density membrane fractions. In human peripheral blood T lymphocytes, 20% to 30% of the Src family protein tyrosine kinases, Lck and Fyn, are recovered from these fractions. CD44-associated protein kinase activity was selectively recovered from the low-density membrane fractions, corresponding to glycosphingolipid-rich plasma membrane microdomains. Reprecipitation of the in vitro phosphorylated proteins showed that CD44 associates not only with Lck but also with Fyn kinase in these membrane domains. Our results suggest that cellular stimulation via CD44 may proceed through the signaling machinery of glycosphingolipid-enriched plasma membrane microdomains and, hence, depend on the functional integrity of such domains.


1994 ◽  
Vol 269 (30) ◽  
pp. 19626-19632
Author(s):  
W. Schorb ◽  
T.C. Peeler ◽  
N.N. Madigan ◽  
K.M. Conrad ◽  
K.M. Baker

Sign in / Sign up

Export Citation Format

Share Document