scholarly journals Costimulation of T-cell activation and virus production by B7 antigen on activated CD4+ T cells from human immunodeficiency virus type 1-infected donors

1993 ◽  
Vol 90 (23) ◽  
pp. 11094-11098 ◽  
Author(s):  
O K Haffar ◽  
M D Smithgall ◽  
J Bradshaw ◽  
B Brady ◽  
N K Damle ◽  
...  

Infection with the human immunodeficiency virus type 1 (HIV-1) requires T-cell activation. Recent studies have shown that interactions of the T-lymphocyte receptors CD28 and CTLA-4 with their counter receptor, B7, on antigen-presenting cells are required for optimal T-cell activation. Here we show that HIV-1 infection is associated with decreased expression of CD28 and increased expression of B7 on CD4+ T-cell lines generated from seropositive donors by alloantigen stimulation. Loss of CD28 expression was not seen on CD4+ T-cell lines from seronegative donors, but up-regulation of B7 expression was observed upon more prolonged culture. Both T-cell proliferation and interleukin 2 mRNA accumulation in HIV-1-infected cultures required costimulation with exogenous B7 because these events were blocked by CTLA4Ig, a soluble form of CTLA-4 that binds B7 with high avidity. In contrast, levels of HIV-1 RNA were not affected by CTLA4Ig, indicating that regulation of virus transcription in these cultures did not depend upon CD28-B7 engagement. Infected T cells could present alloantigen to fresh, uninfected CD4+ T cells, leading to increased proliferation and virus spread to the activated cells. Both of these events were blocked by CTLA4Ig. Thus, chronic activation of HIV-1-infected CD4+ T cells reduces expression of CD28 and increases expression of B7, thereby enabling these T cells to become antigen-presenting cells for uninfected CD4+ T cells; this might be another mechanism for HIV-1 transmission via T-cell-T-cell contact.

2005 ◽  
Vol 79 (10) ◽  
pp. 6299-6311 ◽  
Author(s):  
Geoffrey H. Holm ◽  
Dana Gabuzda

ABSTRACT Apoptosis of uninfected bystander T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 envelope/receptor interactions and immune activation have been implicated as contributors to bystander apoptosis. To better understand the relationship between T-cell activation and bystander apoptosis during HIV-1 pathogenesis, we investigated the effects of the highly cytopathic CXCR4-tropic HIV-1 variant ELI6 on primary CD4+ and CD8+ T cells. Infection of primary T-cell cultures with ELI6 induced CD4+ T-cell depletion by direct cell lysis and bystander apoptosis. Exposure of primary CD4+ and CD8+ T cells to nonreplicating ELI6 virions induced bystander apoptosis through a Fas-independent mechanism. Bystander apoptosis of CD4+ T cells required direct contact with virions and Env/CXCR4 binding. In contrast, the apoptosis of CD8+ T cells was triggered by a soluble factor(s) secreted by CD4+ T cells. HIV-1 virions activated CD4+ and CD8+ T cells to express CD25 and HLA-DR and preferentially induced apoptosis in CD25+HLA-DR+ T cells in a CXCR4-dependent manner. Maximal levels of binding, activation, and apoptosis were induced by virions that incorporated MHC class II and B7-2 into the viral membrane. These results suggest that nonreplicating HIV-1 virions contribute to chronic immune activation and T-cell depletion during HIV-1 pathogenesis by activating CD4+ and CD8+ T cells, which then proceed to die via apoptosis. This mechanism may represent a viral immune evasion strategy to increase viral replication by activating target cells while killing immune effector cells that are not productively infected.


2007 ◽  
Vol 82 (4) ◽  
pp. 1870-1883 ◽  
Author(s):  
Ahmad R. Sedaghat ◽  
Jennifer German ◽  
Tanya M. Teslovich ◽  
Joseph Cofrancesco ◽  
Chunfa C. Jie ◽  
...  

ABSTRACT The mechanism of CD4+ T-cell depletion during chronic human immunodeficiency virus type 1 (HIV-1) infection remains unknown. Many studies suggest a significant role for chronic CD4+ T-cell activation. We assumed that the pathogenic process of excessive CD4+ T-cell activation would be reflected in the transcriptional profiles of activated CD4+ T cells. Here we demonstrate that the transcriptional programs of in vivo-activated CD4+ T cells from untreated HIV-positive (HIV+) individuals are clearly different from those of activated CD4+ T cells from HIV-negative (HIV−) individuals. We observed a dramatic up-regulation of cell cycle-associated and interferon-stimulated transcripts in activated CD4+ T cells of untreated HIV+ individuals. Furthermore, we find an enrichment of proliferative and type I interferon-responsive transcription factor binding sites in the promoters of genes that are differentially expressed in activated CD4+ T cells of untreated HIV+ individuals compared to those of HIV− individuals. We confirm these findings by examination of in vivo-activated CD4+ T cells. Taken together, these results suggest that activated CD4+ T cells from untreated HIV+ individuals are in a hyperproliferative state that is modulated by type I interferons. From these results, we propose a new model for CD4+ T-cell depletion during chronic HIV-1 infection.


2009 ◽  
Vol 83 (22) ◽  
pp. 11830-11846 ◽  
Author(s):  
Mir Munir Ahmed Rahim ◽  
Pavel Chrobak ◽  
Chunyan Hu ◽  
Zaher Hanna ◽  
Paul Jolicoeur

ABSTRACT CD4C/HIVnef transgenic (Tg) mice express Nef in CD4+ T cells and in the cells of the macrophage/monocyte/dendritic lineage, and they develop an AIDS-like disease similar to human AIDS. In these mice, Nef is constitutively expressed throughout life. To rule out the contribution of any developmental defects caused by early expression of Nef, we generated inducible human immunodeficiency virus type 1 (HIV-1) Nef Tg mice by using the tetracycline-inducible system. Faithful expression of the Nef transgene was induced in (CD4C/rtTA × TRE/HIVNef) or (CD4C/rtTA2S-M2 × TRE/HIVNef) double-Tg mice upon doxycycline (DOX) treatment in drinking water. Long-term treatment of these mice with DOX also led to loss, apoptosis, and activation of CD4+ T cells, this latter phenotype being observed even with low levels of Nef. These phenotypes could be transferred by bone marrow (BM) transplantation, indicating a hematopoietic cell autonomous effect. In addition, in mixed Tg:non-Tg BM chimeras, only Tg and not non-Tg CD4+ T cells exhibited an effector/memory phenotype in the absence of lymphopenia. Finally, the DOX-induced double-Tg mice developed nonlymphoid organ diseases similar to those of CD4C/HIVNef Tg mice and of humans infected with HIV-1. These results show for the first time that adult mice are susceptible to the detrimental action of Nef and that Nef-mediated T-cell activation can be independent of lymphopenia. These Tg mice represent a unique model which is likely to be instrumental for understanding the cellular and molecular pathways of Nef action as well as the main characteristics of immune reconstitution following DOX withdrawal.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4161-4164 ◽  
Author(s):  
Suha Saleh ◽  
Ajantha Solomon ◽  
Fiona Wightman ◽  
Miranda Xhilaga ◽  
Paul U. Cameron ◽  
...  

Latent HIV-1 infection of resting memory CD4+ T cells represents the major barrier to HIV-1 eradication. To determine whether the CCR7 ligands involved in lymphocyte migration can alter HIV-1 infection of resting CD4+ T cells, we infected purified resting CD4+ T cells after incubation with the chemokines CCL19 and CCL21. Incubation with CCL19 or CCL21 did not alter markers of T-cell activation or proliferation. However, after HIV-1 infection of CCL19- or CCL21-treated CD4+ T-cells, we observed low-level HIV-1 production but high concentrations of integrated HIV-1 DNA, approaching that seen in mitogen-stimulated T-cell blasts. Restimulation of CCL19-treated infected CD4+ T cells resulted in virus production consistent with establishment of postintegration latency. CCR7 ligands facilitate efficient entry of HIV-1 into resting CD4+ T cells. These studies demonstrate a unique action of the chemokines CCL19 and CCL21 and provide a novel model with which to study HIV-1 latency in vitro.


2005 ◽  
Vol 79 (13) ◽  
pp. 7990-8003 ◽  
Author(s):  
Biswanath Majumder ◽  
Michelle L. Janket ◽  
Elizabeth A. Schafer ◽  
Keri Schaubert ◽  
Xiao-Li Huang ◽  
...  

ABSTRACT Antigen presentation and T-cell activation are dynamic processes involving signaling molecules present in both APCs and T cells. Effective APC function and T-cell activation can be compromised by viral immune evasion strategies, including those of human immunodeficiency virus type 1 (HIV-1). In this study, we determined the effects of HIV-1 Vpr on one of the initial target of the virus, dendritic cells (DC), by investigating DC maturation, cytokine profiling, and CD8-specific T-cell stimulation function followed by a second signal. Vpr impaired the expression of CD80, CD83, and CD86 at the transcriptional level without altering normal cellular transcription. Cytokine profiling indicated that the presence of Vpr inhibited production of interleukin 12 (IL-12) and upregulated IL-10, whereas IL-6 and IL-1β were unaltered. Furthermore, DC infected with HIV-1 vpr + significantly reduced the activation of antigen-specific memory and recall cytotoxic-T-lymphocyte responses. Taken together, these results indicate that HIV-1 Vpr may in part be responsible for HIV-1 immune evasion by inhibiting the maturation of costimulatory molecules and cytokines essential for immune activation.


2019 ◽  
Author(s):  
Birgitta Lindqvist ◽  
Sara Svensson Akusjarvi ◽  
Anders Sonnerborg ◽  
Marios Dimitriou ◽  
J. Peter Svensson

Human immunodeficiency virus type 1 (HIV-1) infection is a chronic condition, where viral DNA integrates into the genome. Latently infected cells form a persistent, heterogeneous reservoir. The reservoir that reinstates an active replication comprises only cells with intact provirus that can be reactivated. We confirmed that latently infected cells from patients exhibited active transcription throughout the provirus. To find transcriptional determinants, we characterized the establishment and maintenance of viral latency during proviral chromatin maturation in cultures of primary CD4+ T-cells for four months after ex vivo HIV-1 infection. As heterochromatin (marked with H3K9me3 or H3K27me3) gradually stabilized, the provirus became less accessible with reduced activation potential. In a subset of infected cells, active marks (i.e., H3K27ac) remained detectable, even after prolonged proviral silencing. After T-cell activation, the proviral activation occurred uniquely in cells with H3K27ac-marked proviruses. Our observations suggested that, after transient proviral activation, cells were actively returned to latency.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-1 infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV-1 and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV-1 and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-1 expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-1 expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-1 latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e34521 ◽  
Author(s):  
Corine St. Gelais ◽  
Christopher M. Coleman ◽  
Jian-Hua Wang ◽  
Li Wu

2005 ◽  
Vol 79 (5) ◽  
pp. 3052-3062 ◽  
Author(s):  
Xiao-Li Huang ◽  
Zheng Fan ◽  
Bonnie A. Colleton ◽  
Rico Buchli ◽  
Hongyi Li ◽  
...  

ABSTRACT Dendritic cells (DCs) loaded with viral peptides are a potential form of immunotherapy of human immunodeficiency virus type 1 (HIV-1) infection. We show that DCs derived from blood monocytes of subjects with chronic HIV-1 infection on combination antiretroviral drug therapy have increases in expression of HLA, T-cell coreceptor, and T-cell activation molecules in response to the DC maturation factor CD40L comparable to those from uninfected persons. Mature DCs (mDCs) loaded with HLA A*0201-restricted viral peptides of the optimal length (9-mer) were more efficient at activating antiviral CD8+ T cells than were immature DCs or peptide alone. Optimal presentation of these exogenous peptides required uptake and vesicular trafficking and was comparable in DCs derived from HIV-1-infected and uninfected persons. Furthermore, DCs from HIV-1-infected and uninfected persons had similar capacities to process viral peptides with C-terminal and N-terminal extensions through their proteasomal and cytosolic pathways, respectively. We conclude that DCs derived from HIV-1-infected persons have similar abilities to process exogenous peptides for presentation to CD8+ T cells as those from uninfected persons. This conclusion supports the use of DCs loaded with synthetic peptides in immunotherapy of HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document