scholarly journals Identification and characterization of putative transposable DNA elements in solanaceous plants and Caenorhabditis elegans.

1995 ◽  
Vol 92 (19) ◽  
pp. 8886-8890 ◽  
Author(s):  
T. Oosumi ◽  
B. Garlick ◽  
W. R. Belknap
PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e113737 ◽  
Author(s):  
Kara Braunreiter ◽  
Shelby Hamlin ◽  
Jamie Lyman-Gingerich

Genetics ◽  
1985 ◽  
Vol 110 (1) ◽  
pp. 17-72
Author(s):  
Edwin L Ferguson ◽  
H Robert Horvitz

ABSTRACT Ninety-five mutants of the nematode Caenorhabditis elegans altered in the cell lineages of the vulva have been isolated on the basis of their displaying one of two phenotypes, Vulvaless or Multivulva. In Vulvaless mutants, which define 12 genes, no vulva is present. In Multivulva mutants, which define ten genes, one or more supernumerary vulva-like protrusions are located along the ventral side of the animal. A single recessive mutation is responsible for the phenotypes of most, but not all, of these strains. Fifteen of these 22 genes are represented by multiple alleles. We have shown by a variety of genetic criteria that mutations that result in a Vulvaless or Multivulva phenotype in six of the 22 genes most likely eliminate gene function. In addition, Vulvaless or Multivulva mutations in seven of the other genes most likely result in a partial reduction of gene function; the absence of the activity of any of these genes probably results in lethality or sterility. Our results suggest that we may have identified most, or all, genes of these two classes.


2000 ◽  
Vol 113 (21) ◽  
pp. 3747-3759 ◽  
Author(s):  
Y. Bobinnec ◽  
M. Fukuda ◽  
E. Nishida

gamma-Tubulin is an essential component of the microtubule-nucleation machinery and therefore plays a crucial role during mitosis. To gain further insights into the function of this protein in the events that take place during embryogenesis and differentiation, we carried out detailed studies on gamma-tubulin during all the developmental stages of Caenorhabditis elegans. We identified the gamma-tubulin gene from this organism and analyzed the localization of the protein by both immunofluorescence and GFP reporter construct. We show that gamma-tubulin association with the centrosome is highly dynamic in mitotic cells, being massively recruited at prophase and released at anatelophase. This accumulation in mitotic centrosomes is dramatic during the first embryonic divisions. We provide the first description of the morphological changes at the centrosome level during the orientation of the mitotic spindle and the flattening of the posterior aster. Loss of function of the gamma-tubulin gene by RNAi induces a strong polyploidization of mitotic germ cells and embryos, but does not affect meiosis and pronuclear migration. In addition, we demonstrate the prominent redistribution of gamma-tubulin in adults at basal bodies of amphid and phasmid neurons, and at the apical membrane of polarized intestinal cells.


2005 ◽  
Vol 24 (14) ◽  
pp. 2566-2578 ◽  
Author(s):  
Alexander Gottschalk ◽  
Ruta B Almedom ◽  
Thorsten Schedletzky ◽  
Scott D Anderson ◽  
John R Yates ◽  
...  

Microbiology ◽  
2010 ◽  
Vol 156 (3) ◽  
pp. 896-908 ◽  
Author(s):  
Silvia A. Sousa ◽  
Christian G. Ramos ◽  
Leonilde M. Moreira ◽  
Jorge H. Leitão

The Burkholderia cepacia complex (Bcc) emerged as problematic opportunistic pathogens to cystic fibrosis (CF) patients. Although several virulence factors have been identified in Bcc, the knowledge of their relative contribution to Bcc pathogenicity remains scarce. In this work, we describe the identification and characterization of a B. cepacia IST408 mutant containing a disruption in the hfq gene. In other bacteria, Hfq is a global regulator of metabolism, acting as an RNA chaperone involved in the riboregulation of target mRNAs by small regulatory non-coding RNAs (sRNAs). The B. cepacia Hfq protein was overproduced as a histidine-tagged derivative, and we show evidence that the protein forms hexamers and binds sRNAs. When provided in trans, the B. cepacia IST408 hfq gene complemented the Escherichia coli hfq mutant strain GS081. Our results also show that the B. cepacia hfq mutant is more susceptible to stress conditions mimicking those faced by Bcc bacteria when infecting the CF host. In addition, the B. cepacia hfq mutant and two hfq mutants derived from B. dolosa and B. ambifaria clinical isolates also exhibited a reduced ability to colonize and kill the nematode Caenorhabditis elegans, used as an infection model. These data, together with the conservation of Hfq orthologues among Bcc, strongly suggest that Hfq plays a major role in the survival of Bcc under stress conditions, contributing to the success of Bcc as CF pathogens.


Sign in / Sign up

Export Citation Format

Share Document