scholarly journals Overexpression of a Rrp1 transgene reduces the somatic mutation and recombination frequency induced by oxidative DNA damage in Drosophila melanogaster.

1996 ◽  
Vol 93 (4) ◽  
pp. 1607-1612 ◽  
Author(s):  
A. Szakmary ◽  
S. M. Huang ◽  
D. T. Chang ◽  
P. A. Beachy ◽  
M. Sander
2020 ◽  
Vol 9 (9) ◽  
pp. e745997833
Author(s):  
Raiane de Sousa Oliveira ◽  
Dallyla de Carvalho Moura ◽  
Regina Maria Silva Sousa ◽  
Thais Teixeira da Silva ◽  
Maria das Dores Alves Oliveira ◽  
...  

The aim of this study was to assess the genotoxic and antigenotoxic effects of Poincianella bracteosa bark aqueous extract on DNA damage induced by doxorubicin (DXR) a chemotherapeutic agent using SMART (Somatic Mutation and Recombination Test). The analysis was performed using the somatic mutation and recombination test in Drosophila melanogaster. Larvae from the standard and high-bioactivity crosses were chronically treated with four concentrations of P. bracteosa bark tea, alone and in association with DXR. The results revealed no mutagenic effect of bark extract for any of the concentrations tested. A modulating effect of aqueous extract in reducing the genotoxic action of DXR was observed for all concentrations tested in descendants of both crosses, but inhibition was more effective in those from the high-bioactive cross. The modulating effect observed may be associated with the presence of tannins and reducing sugars, as observed in phytochemical studies, since they are capable of capturing and stabilizing free radicals. Given the widespread use of P. bracteosa bark in folk medicine, further studies to elucidate the mechanism of action of these cellular compounds and with other experimental models would be useful to confirm that P. bracteosa extract is beneficial to human health.


2020 ◽  
Author(s):  
Bin Wang ◽  
Weihong Qiu ◽  
Shijie Yang ◽  
Limin Cao ◽  
Chunmei Zhu ◽  
...  

<a><b>OBJECTIVE: </b></a>Acrylamide exposure from daily-consumed food has raised global concern.<b> </b>We aimed to assess the exposure-response relationships of internal acrylamide exposure with oxidative DNA damage, lipid peroxidation and fasting plasma glucose (FPG) alteration, and investigate the mediating role of oxidative DNA damage and lipid peroxidation in the association of internal acrylamide exposure with FPG. <p><b>RESEARCH DESIGN AND METHODS:</b> FPG and urinary biomarkers of oxidative DNA damage (8-hydroxy-deoxy-guanosine, 8-OHdG), lipid peroxidation (8-iso-prostaglandin-F2α, 8-iso-PGF2α) and acrylamide exposure (N-acetyl-S-(2-carbamoylethyl)-L-cysteine, AAMA; N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine, GAMA) were measured for 3,270 general adults from the Wuhan-Zhuhai cohort. The associations of urinary acrylamide metabolites with 8-OHdG, 8-iso-PGF2α and FPG were assessed by linear mixed models. The mediating roles of 8-OHdG and 8-iso-PGF2α were evaluated by mediation analysis.</p> <p><b>RESULTS:</b> We found significant linear positive dose-response relationships of urinary acrylamide metabolites with 8-OHdG, 8-iso-PGF2α and FPG (except GAMA with FPG), and 8-iso-PGF2α with FPG. Each 1-unit increase in log-transformed level of AAMA, ΣUAAM (AAMA+GAMA) or 8-iso-PGF2α was associated with a 0.17-, 0.15- or 0.23-mmol/L increase in FPG, respectively (<i>P </i>or/and<i> P trend</i><0.05). Each 1% increase in AAMA, GAMA or ΣUAAM was associated with a 0.19%, 0.27% or 0.22% increase in 8-OHdG, respectively, and a 0.40%, 0.48% or 0.44% increase in 8-iso-PGF2α, respectively (<i>P </i>and<i> P trend</i><0.05). Increased 8-iso-PGF2α rather than 8-OHdG significantly mediated 64.29% and 76.92% of the AAMA and ΣUAAM associated-FPG increases, respectively.</p> <p><b>CONCLUSIONS:</b> Exposure of general adult population to acrylamide was associated with FPG elevation, oxidative DNA damage and lipid peroxidation, which in turn partly mediated acrylamide-associated FPG elevation.<b></b></p>


Author(s):  
I. A. Umnyagina ◽  
L. A. Strakhova ◽  
T. V. Blinova

In the blood serum of 70% individuals exposed to harmful factors of the working environment, a high level of oxidative stress and the DNA damage marker 8-Hydroxy-2’-Deoxyguanosine (8-OHdG) were detected.


Sign in / Sign up

Export Citation Format

Share Document