scholarly journals Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B

1999 ◽  
Vol 96 (5) ◽  
pp. 2077-2081 ◽  
Author(s):  
B.-H. Jiang ◽  
M. Aoki ◽  
J. Z. Zheng ◽  
J. Li ◽  
P. K. Vogt
1997 ◽  
Vol 326 (1) ◽  
pp. 249-257 ◽  
Author(s):  
Richard V. PARRY ◽  
Daniel OLIVE ◽  
John WESTWICK ◽  
David M. SANSOM ◽  
Stephen G. WARD

The CD28 cytoplasmic tail contains several potential phosphorylation sites for the serine/threonine kinase protein kinase C (PKC) and/or proline-directed serine/threonine kinases, such as extracellular signal-regulated kinases. We demonstrate that ligation of CD28 by B7.1 results in strong serine/threonine phosphorylation of CD28. It is unlikely that ligation-stimulated phosphorylation of CD28 is mediated via activation of PKC, since it was not prevented by pre-treatment of Jurkat cells with inhibitors of PKC, and it was not mimicked by treatment with PKC activators such as PMA. Nevertheless, despite the lack of detectable effects of PMA treatment on CD28 phosphorylation, PMA did partially inhibit the association of CD28 with the putative signalling molecule phosphatidylinositol 3-kinase (PI 3-kinase) and the subsequent accumulation of PtdIns(3,4,5)P3. PI 3-kinase exhibits dual specificity as both a lipid kinase and a protein serine kinase, and site-specific mutagenesis of the Tyr173 residue in the CD28 cytoplasmic tail, which abolishes CD28 coupling to PI 3-kinase [Pages, Ragueneau, Rottapel, Truneh, Nunes, Imbert and Olive (1994) Nature (London) 369, 327–329], also prevents ligation-stimulated phosphorylation of CD28. However, the two PI 3-kinase inhibitors wortmannin and LY294002 had no effect on phosphorylation of CD28 after ligation by B7.1. This study therefore demonstrates that (1) a CD28-activated serine/threonine kinase distinct from both PKC and PI 3-kinase mediates ligation-stimulated CD28 phosphorylation, and (2) the PMA-stimulated down-regulation of the coupling of CD28 to PI 3-kinase is not due to PMA-stimulated phosphorylation of CD28.


2001 ◽  
Vol 276 (47) ◽  
pp. 44212-44221 ◽  
Author(s):  
Leonard J. Foster ◽  
Dailin Li ◽  
Varinder K. Randhawa ◽  
Amira Klip

2001 ◽  
Vol 356 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Mireille CORMONT ◽  
Nadine GAUTIER ◽  
Karine ILC ◽  
Yannick Le MARCHAND-BRUSTEL

The small GTPase Rab4 has been shown to participate in the subcellular distribution of GLUT4 under both basal and insulin-stimulated conditions in adipocytes. In the present work, we have characterized the effect of Rab4 ΔCT, a prenylation-deficient and thus cytosolic form of Rab4, in this process. We show that the expression of Rab4 ΔCT in freshly isolated adipocytes inhibits insulin-induced GLUT4 translocation, but only when this protein is in its GTP-bound active form. Further, it not only blocks the effect of insulin, but also that of a hyperosmotic shock, but does not interfere with the effect of zinc ions on GLUT4 translocation. Rab4 ΔCT was then shown to prevent GLUT4 translocation induced by the expression of an active form of phosphatidylinositol 3-kinase or of protein kinase B, without altering the activities of the enzymes. Our results are consistent with a role of Rab4 ΔCT acting as a dominant negative protein towards Rab4, possibly by binding to Rab4 effectors.


Sign in / Sign up

Export Citation Format

Share Document