scholarly journals Comparing in vitro, in situ, and in vivo experimental data in a three-dimensional model of mammalian cochlear mechanics

1999 ◽  
Vol 96 (7) ◽  
pp. 3676-3681 ◽  
Author(s):  
P. J. Kolston
2007 ◽  
Vol 189 (14) ◽  
pp. 5379-5382 ◽  
Author(s):  
Clément Barjon ◽  
Karine Wecker ◽  
Nadia Izadi-Pruneyre ◽  
Philippe Delepelaire

ABSTRACT On the basis of the three-dimensional model of the heme/hemophore TonB-dependent outer membrane receptor HasR, mutants with six-residue deletions in the 11 putative extracellular loops were generated. Although all mutants continued to be active TonB-dependent heme transporters, mutations in three loops abolished hemophore HasA binding both in vivo and in vitro.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
D. Pulgarín ◽  
J. Plaza ◽  
J. Ruge ◽  
J. Rojas

This study proposes a methodology for the calibration of combined sewer overflow (CSO), incorporating the results of the three-dimensional ANSYS CFX model in the SWMM one-dimensional model. The procedure consists of constructing calibration curves in ANSYS CFX that relate the input flow to the CSO with the overflow, to then incorporate them into the SWMM model. The results obtained show that the behavior of the flow over the crest of the overflow weir varies in space and time. Therefore, the flow of entry to the CSO and the flow of excesses maintain a non-linear relationship, contrary to the results obtained in the one-dimensional model. However, the uncertainty associated with the idealization of flow methodologies in one dimension is reduced under the SWMM model with kinematic wave conditions and simulating CSO from curves obtained in ANSYS CFX. The result obtained facilitates the calibration of combined sewer networks for permanent or non-permanent flow conditions, by means of the construction of curves in a three-dimensional model, especially when the information collected in situ is limited.


2020 ◽  
Vol 20 (4) ◽  
pp. 484-490
Author(s):  
Mohammad Rasool Khazaei ◽  
Zahra Rashidi ◽  
Farzaneh Chobsaz ◽  
Elham Niromand ◽  
Mozafar Khazaei

Blood ◽  
1978 ◽  
Vol 51 (4) ◽  
pp. 633-643 ◽  
Author(s):  
N Mohandas ◽  
M Prenant

Abstract Three-dimensional scale models of bone marrow from a hypertransfused and a normal rat were constructed. The model of marrow from the hypertransfused rat demonstrated the existence of distinct erythroblastic islands in situ in which the erythroblasts underwent sychronous maturation. Macrophages were found in close association with the developing erythroblasts. The immature erythroblasts were tightly grouped, but as they matured they began to move apart. Erythroblasts in individual clusters were found to be at the same stage of morphologic maturation. In contrast, the model of marrow from the normal rat showed a majority of clusters containing erythroblasts at various stages of maturation. Erythropoiesis was not spatially restricted to the area proximal to the sinuses but was found to occur over the entire marrow space. Thrombopoiesis, however, was found to take place exclusively in the immediate vicinity of the marrow sinuses.


2003 ◽  
Vol 14 (12) ◽  
pp. 4871-4884 ◽  
Author(s):  
Bo Huang ◽  
Guisheng Zeng ◽  
Alvin Y.J. Ng ◽  
Mingjie Cai

Prk1p is a serine/threonine kinase involved in the regulation of the actin cytoskeleton organization in the yeast Saccharomyces cerevisiae. Previously, we have identified LxxQxTG as the phosphorylation site of Prk1p. In this report, the recognition sequence for Prk1p is investigated more thoroughly. It is found that the presence of a hydrophobic residue at the position of P-5 is necessary for Prk1p phosphorylation and L, I, V, and M are all able to confer the phosphorylation at various efficiencies. The residue flexibility at P-2 has also been identified to include Q, N, T, and S. A homology-based three-dimensional model of the kinase domain of Prk1p provided some structural interpretations for these substrate specificities. The characterization of the [L/I/V/M]xx[Q/N/T/S]xTG motif led to the identification of a spectrum of potential targets for Prk1p from yeast genome. One of them, Scd5p, which contains three LxxTxTG motifs and is previously known to be important for endocytosis and actin organization, has been chosen to demonstrate its relationship with Prk1p. Phosphorylation of Scd5p by Prk1p at the three LxxTxTG motifs could be detected in vitro and in vivo, and deletion of PRK1 suppressed the defects in actin cytoskeleton and endocytosis in one of the scd5 mutants. These results allowed us to conclude that Scd5p is likely another regulatory target of Prk1p.


2017 ◽  
Vol 12 (1) ◽  
pp. e237-e249 ◽  
Author(s):  
Yvonne Peck ◽  
Li Ting Leom ◽  
Pei Fen Patricia Low ◽  
Dong-An Wang

Sign in / Sign up

Export Citation Format

Share Document