scholarly journals Knowledge-based analysis of microarray gene expression data by using support vector machines

2000 ◽  
Vol 97 (1) ◽  
pp. 262-267 ◽  
Author(s):  
M. P. S. Brown ◽  
W. N. Grundy ◽  
D. Lin ◽  
N. Cristianini ◽  
C. W. Sugnet ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251800
Author(s):  
Dominik Schaack ◽  
Markus A. Weigand ◽  
Florian Uhle

We investigate the feasibility of molecular-level sample classification of sepsis using microarray gene expression data merged by in silico meta-analysis. Publicly available data series were extracted from NCBI Gene Expression Omnibus and EMBL-EBI ArrayExpress to create a comprehensive meta-analysis microarray expression set (meta-expression set). Measurements had to be obtained via microarray-technique from whole blood samples of adult or pediatric patients with sepsis diagnosed based on international consensus definition immediately after admission to the intensive care unit. We aggregate trauma patients, systemic inflammatory response syndrome (SIRS) patients, and healthy controls in a non-septic entity. Differential expression (DE) analysis is compared with machine-learning-based solutions like decision tree (DT), random forest (RF), support vector machine (SVM), and deep-learning neural networks (DNNs). We evaluated classifier training and discrimination performance in 100 independent iterations. To test diagnostic resilience, we gradually degraded expression data in multiple levels. Clustering of expression values based on DE genes results in partial identification of sepsis samples. In contrast, RF, SVM, and DNN provide excellent diagnostic performance measured in terms of accuracy and area under the curve (>0.96 and >0.99, respectively). We prove DNNs as the most resilient methodology, virtually unaffected by targeted removal of DE genes. By surpassing most other published solutions, the presented approach substantially augments current diagnostic capability in intensive care medicine.


Author(s):  
Qiang Zhao ◽  
Jianguo Sun

Statistical analysis of microarray gene expression data has recently attracted a great deal of attention. One problem of interest is to relate genes to survival outcomes of patients with the purpose of building regression models for the prediction of future patients' survival based on their gene expression data. For this, several authors have discussed the use of the proportional hazards or Cox model after reducing the dimension of the gene expression data. This paper presents a new approach to conduct the Cox survival analysis of microarray gene expression data with the focus on models' predictive ability. The method modifies the correlation principal component regression (Sun, 1995) to handle the censoring problem of survival data. The results based on simulated data and a set of publicly available data on diffuse large B-cell lymphoma show that the proposed method works well in terms of models' robustness and predictive ability in comparison with some existing partial least squares approaches. Also, the new approach is simpler and easy to implement.


Sign in / Sign up

Export Citation Format

Share Document