scholarly journals Different Endosomal Proteolysis Requirements for Antigen Processing of Two T-cell Epitopes of the M5 Protein from ViableStreptococcus pyogenes

1998 ◽  
Vol 273 (6) ◽  
pp. 3291-3295 ◽  
Author(s):  
Alexei A. Delvig ◽  
John H. Robinson
2004 ◽  
Vol 199 (10) ◽  
pp. 1421-1431 ◽  
Author(s):  
Judy Tellam ◽  
Geoff Connolly ◽  
Katherine J. Green ◽  
John J. Miles ◽  
Denis J. Moss ◽  
...  

Epstein-Barr virus (EBV)–encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type–dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I–restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8+ T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8+ T cell epitopes from EBNA1.


1993 ◽  
Vol 178 (4) ◽  
pp. 1459-1463 ◽  
Author(s):  
C Watts ◽  
A Lanzavecchia

Immunoglobulins drive efficient antigen capture by antigen presenting cells for processing and presentation on class II MHC-molecules. High affinity antibody/antigen interactions are stable at endosomal/lysosomal pH thus altering the substrate for antigen processing. We show that this can result in strong suppression of presentation of some T cell epitopes. This effect was observed when the antibody specificity was a B cell surface Ig, or formed part of an immune complex. In the latter case the presence of the suppressing antibody boosts presentation of other T cell epitopes through enhanced uptake into Fc receptor bearing cells. The influence of bound antibodies on the outcome of antigen processing may influence with T cell epitopes dominate T cell responses and may change the focus of the response with time.


1998 ◽  
Vol 188 (4) ◽  
pp. 773-778 ◽  
Author(s):  
Philip Wood ◽  
Tim Elliott

We and others have shown that influenza A nucleoprotein (NP) targeted to the secretory pathway cannot be processed to yield several cytotoxic T lymphocyte (CTL) epitopes in cell lines that lack the transporter associated with antigen processing (TAP). However, a large COOH-terminal fragment of NP is processed and presented in these cells. Full-length NP is cotranslationally glycosylated in the lumen of the endoplasmic reticulum at two sites distal to the major H2-Kk and H2-Db restricted CTL epitopes, and we show here that pharmacological or genetic inhibition of N-linked glycosylation, leads to the processing and presentation of both these epitopes in a TAP-independent way.


2021 ◽  
Vol 12 ◽  
Author(s):  
Evelien Schurgers ◽  
David C. Wraith

The immune response to exogenous proteins can overcome the therapeutic benefits of immunotherapies and hamper the treatment of protein replacement therapies. One clear example of this is haemophilia A resulting from deleterious mutations in the FVIII gene. Replacement with serum derived or recombinant FVIII protein can cause anti-drug antibodies in 20-50% of individuals treated. The resulting inhibitor antibodies override the benefit of treatment and, at best, make life unpredictable for those treated. The only way to overcome the inhibitor issue is to reinstate immunological tolerance to the administered protein. Here we compare the various approaches that have been tested and focus on the use of antigen-processing independent T cell epitopes (apitopes) for tolerance induction. Apitopes are readily designed from any protein whether this is derived from a clotting factor, enzyme replacement therapy, gene therapy or therapeutic antibody.


2010 ◽  
Vol 12 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Jan H Kessler ◽  
Selina Khan ◽  
Ulrike Seifert ◽  
Sylvie Le Gall ◽  
K Martin Chow ◽  
...  

2002 ◽  
Vol 195 (8) ◽  
pp. 983-990 ◽  
Author(s):  
Ulrike Kuckelkorn ◽  
Thomas Ruppert ◽  
Britta Strehl ◽  
Peter R. Jungblut ◽  
Ursula Zimny-Arndt ◽  
...  

Adoptive transfer of cross-reactive HSP60-specific CD8+ T cells into immunodeficient mice causes autoimmune intestinal pathology restricted to the small intestine. We wondered whether local immunopathology induced by CD8+ T cells can be explained by tissue-specific differences in proteasome-mediated processing of major histocompatibility complex class I T cell epitopes. Our experiments demonstrate that 20S proteasomes of different organs display a characteristic composition of α and β chain subunits and produce distinct peptide fragments with respect to both quality and quantity. Digests of HSP60 polypeptides by 20S proteasomes show most efficient generation of the pathology related CD8+ T cell epitope in the small intestine. Further, we demonstrate that the organ-specific potential to produce defined T cell epitopes reflects quantities that are relevant for cytotoxic T lymphocyte recognition. We propose tissue-specific antigen processing by 20S proteasomes as a potential mechanism to control organ-specific immune responses.


Sign in / Sign up

Export Citation Format

Share Document