scholarly journals Fibroblast Growth Factor Receptors Participate in the Control of Mitogen-activated Protein Kinase Activity during Nerve Growth Factor-induced Neuronal Differentiation of PC12 Cells

1999 ◽  
Vol 274 (30) ◽  
pp. 20901-20908 ◽  
Author(s):  
Eric Chevet ◽  
Gilles Lemaı̂tre ◽  
Neboǰa Janjić ◽  
Denis Barritault ◽  
Andreas Bikfalvi ◽  
...  
2001 ◽  
Vol 281 (4) ◽  
pp. L766-L775 ◽  
Author(s):  
Isabel Carreras ◽  
Celeste B. Rich ◽  
Julie A. Jaworski ◽  
Sandra J. Dicamillo ◽  
Mikhail P. Panchenko ◽  
...  

Previously, we have demonstrated that basic fibroblast growth factor (bFGF) decreases elastin gene transcription in confluent rat lung fibroblasts via the binding of a Fra-1-c-Jun heterodimer to an activator protein-1-cAMP response element in the distal region of the elastin promoter. In the present study, we show that bFGF activates the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2, resulting in the translocation of phosphorylated extracellular signal-regulated kinase 1/2 into the nucleus followed by increased binding of Elk-1 to the serum response element of the c-Fos promoter, transient induction of c-Fos mRNA, and sustained induction of Fra-1 mRNA. The addition of PD-98059, an inhibitor of mitogen-activated protein kinase kinase, abrogates the bFGF-dependent repression of elastin mRNA expression. Comparative analyses of confluent and subconfluent fibroblast cultures reveal significant differences in elastin mRNA levels and activator protein-1 protein factors involved in the regulation of elastin transcription. These findings suggest that bFGF modulates specific cellular events that are dependent on the state of the cell and provide a rationale for the differential responses that can be expected in development and injury or repair situations.


Sign in / Sign up

Export Citation Format

Share Document