scholarly journals Solving a furan fatty acid biosynthesis puzzle

2020 ◽  
Vol 295 (29) ◽  
pp. 9802-9803
Author(s):  
Xiao-Hong Yu ◽  
John Shanklin

Furan fatty acids (FuFAs), characterized by a central furan moiety, are widely dispersed in nature, but their biosynthetic origins are not clear. A new study from Lemke et al. employs a full court press of genetics, genomics, biochemical, and advanced analytical techniques to dissect the biosynthetic pathway of mono- and dimethyl FuFAs and their intermediates in two related bacteria. These findings lay the foundation both for detailed study of these novel enzymes and for gaining further insights into FuFA functions.

2002 ◽  
Vol 364 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Sabine D'ANDREA ◽  
Hervé GUILLOU ◽  
Sophie JAN ◽  
Daniel CATHELINE ◽  
Jean-Noël THIBAULT ◽  
...  

The recently cloned Δ6-desaturase is known to catalyse the first step in very-long-chain polyunsaturated fatty acid biosynthesis, i.e. the desaturation of linoleic and α-linolenic acids. The hypothesis that this enzyme could also catalyse the terminal desaturation step, i.e. the desaturation of 24-carbon highly unsaturated fatty acids, has never been elucidated. To test this hypothesis, the activity of rat Δ6-desaturase expressed in COS-7 cells was investigated. Recombinant Δ6-desaturase expression was analysed by Western blot, revealing a single band at 45kDa. The putative involvement of this enzyme in the Δ6-desaturation of C24:5n-3 to C24:6n-3 was measured by incubating transfected cells with C22:5n-3. Whereas both transfected and non-transfected COS-7 cells were able to synthesize C24:5n-3 by elongation of C22:5n-3, only cells expressing Δ6-desaturase were also able to produce C24:6n-3. In addition, Δ6-desaturation of [1-14C]C24:5n-3 was assayed invitro in homogenates from COS-7 cells expressing Δ6-desaturase or not, showing that Δ6-desaturase catalyses the conversion of C24:5n-3 to C24:6n-3. Evidence is therefore presented that the same rat Δ6-desaturase catalyses not only the conversion of C18:3n-3 to C18:4n-3, but also the conversion of C24:5n-3 to C24:6n-3. A similar mechanism in the n-6 series is strongly suggested.


1963 ◽  
Vol 41 (1) ◽  
pp. 1267-1274
Author(s):  
Peter F. Hall ◽  
Edward E. Nishizawa ◽  
Kristen B. Eik-Nes

The fatty acids palmitic, palmitoleic, stearic, and oleic have been isolated from rabbit testis and evidence for the synthesis of palmitic and stearic acids de novo from acetate-1-C14is presented. ICSH did not produce demonstrable stimulation of the synthesis of these acids in vitro although the hormone stimulated the production of testosterone-C14by the same tissue. Adrenal tissue was shown to contain palmitic, stearic, and oleic acids, and ACTH did not increase the incorporation of acetate-1-C14into a fatty acid fraction extracted following incubation of adrenal tissue in the presence of this substrate. Fatty acid biosynthesis, therefore, is probably not influenced by the mechanisms by which tropic hormones increase steroid formation.


2015 ◽  
Vol 11 (1) ◽  
pp. 38-59 ◽  
Author(s):  
Joris Beld ◽  
D. John Lee ◽  
Michael D. Burkart

Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery.


Weed Science ◽  
1975 ◽  
Vol 23 (2) ◽  
pp. 100-104 ◽  
Author(s):  
R. E. Wilkinson ◽  
A. E. Smith

EPTC (S-ethyl dipropylthiocarbamate) (33μM) and diallate [S-(2,3-dichloroallyl)diisopropylthiocarbamate] (90μM) inhibited the incorporation of 6 mM acetate-2-14C (Ac∗) by 80% and 65%, respectively, and the incorporation of 0.5μM malonate-2-14C (Mal∗) by 32% and 26%, respectively, into the lipids of spinach (Spinacia oleraceaL.) chloroplasts. The inhibition of Ac∗or Mal∗incorporation into lipids was not observed in the presence of excess Ac∗or Mal∗, respectively. Incorporation of palmitate-1-14C and oleate-1-14C into chloroplast lipids was inhibited by EPTC and diallate. Mal∗incorporation into dienoic fatty acids was inhibited by EPTC and diallate. The concentration of EPTC and diallate inhibiting lipid synthesis falls into the physiological range of these herbicides, explains some metabolic effects of these compounds, and fits as the mode of activity of these herbicides.


1990 ◽  
Vol 45 (5) ◽  
pp. 518-520 ◽  
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

Thiolactomycin was shown to be a potent inhibitor of de novo fatty acid biosynthesis in intact isolated chloroplasts (measured as [14C]acetate incorporation into total fatty acids). In our attempt to further localize the inhibition site we confirmed the inhibition with a fatty acid synthetase preparation, measuring the incorporation of [14C]malonyl-CoA into total fatty acids. From the two proposed enzymic targets of the fatty acid synthetase by thiolactomycin we could exclude the acetyl-CoA: ACP transacetylase. It appears that the inhibition by thiolactomycin occurs on the level of the condensing enzymes, i.e. the 3-oxoacyl-ACP synthases. We also demonstrated that the two starting enzymes of de novo fatty acid biosynthesis, the acetyl-CoA synthetase and the acetyl-CoA carboxylase, are not affected by thiolactomycin.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Regiane Kawasaki ◽  
Rafael A. Baraúna ◽  
Artur Silva ◽  
Marta S. P. Carepo ◽  
Rui Oliveira ◽  
...  

Exiguobacterium antarcticumB7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show thein silicoreconstruction of the fatty acid biosynthesis pathway ofE. antarcticumB7. To build the stoichiometric model, a semiautomatic procedure was applied, which integrates genome information using KEGG and RAST/SEED. Constraint-based methods, namely, Flux Balance Analysis (FBA) and elementary modes (EM), were applied. FBA was implemented in the sense of hexadecenoic acid production maximization. To evaluate the influence of the gene expression in the fluxome analysis, FBA was also calculated using thelog2⁡FCvalues obtained in the transcriptome analysis at 0°C and 37°C. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway demonstrated the capacity ofE. antarcticumB7 tode novoproduce fatty acid molecules. Under the influence of the transcriptome, the fluxome was altered, promoting the production of short-chain fatty acids. The calculated models contribute to better understanding of the bacterial adaptation at cold environments.


2019 ◽  
Author(s):  
Jiasong Meng ◽  
Yuhan Tang ◽  
Jing Sun ◽  
Jun Tao

Abstract Background: Paeonia lactiflora ‘Hangshao’ is widely cultivated in China because its root can be used to produce raw materials for traditional Chinese medicine ‘Radix Paeoniae Alba’. Due to the presence of abundant unsaturated fatty acids in its seed, it also can be regarded as a new oil plant. However, the process of the biosynthesis of unsaturated fatty acid in herbaceous peony ‘Hangshao’ remained largely unknown. Therefore, transcriptome analysis is helpful to better understand the molecular mechanisms. Results: Five main fatty acids, stearic acid, palmitic acid, oleic acid, linoleic acid and α-linolenic acid, were detected, and their absolute contents increased first and then decreased during seed development. A total of 150,156 Unigenes were obtained by transcriptome sequencing, with an average length of 1,030 bp. There were 1,550 Unigenes annotated in the seven functional databases including NR, NT, GO, KOG, KEGG, SwissProt and InterPro. Based on KEGG database, 1,766 Unigenes were annotated in the lipid metabolic pathways, among which 103, 74 and 70 Unigenes are annotated into fatty acid biosynthesis pathway, fatty acid elongation pathway and unsaturated fatty acid synthesis pathway; respectively. A total of 1480 DEGs were detected. Among them, 83 DEGs were enriched in the fatty acid metabolism pathway, including 12 DEGs involved in the fatty acid biosynthesis and 1 DEG involved in fatty acid elongation. Furthermore, qRT-PCR was used to analyze the expression patterns of nine fatty acid biosynthetic related genes including FBCP, BC, FabD, FabF, FATB, KCR, FAD2, FAD3 and FAD7, and it showed that they all highest expressed at 45 DAF. Conclusions: This study provides the first comprehensive genomic resources characterizing herbaceous peony seeds gene expression at the transcriptional level. These data lay the foundation for elucidating the molecular mechanism of the lipid biosynthesis and fatty acid accumulation for herbaceous peony 'Hangshao'.


Sign in / Sign up

Export Citation Format

Share Document