herbaceous peony
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 50)

H-INDEX

13
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Riwen Fei ◽  
Siyang Duan ◽  
Jiayuan Ge ◽  
Tianyi Sun ◽  
Xiaomei Sun

Abstract Seed dormancy and germination is a complex process, which is affected by external environmental conditions and internal factors independently or mutually. Phytohormones play an important regulatory role in this process. ABA was the main phytohormone affecting herbaceous peony seed dormancy release. However, the mechanism of ABA in the dormancy release of herbaceous peony needs to be further explored. Here, transcriptome data was screened from the perspective of ABA metabolism, and significantly differentially expressed PlNCED1 and PlNCED2 were obtained. We found that their expression trends were positively correlated with ABA content. Among them, PlNCED2 had a stronger regulatory effect on ABA content and was more sensitive to exogenous ABA. Overexpression and silencing of PlNCEDs in callus could affect the expression of PlCYP707As and the content of endogenous ABA. Through the observation of seed germination of Arabidopsis thaliana (A. thaliana), we found PlNCED1 and PlNCED2 promoted seed dormancy, and the promotion effect of PlNCED2 was more obvious. In general, PlNCED1 and PlNCED2 participated in the dormancy release of herbaceous peony seeds by regulating the accumulation of endogenous ABA. Our work can reveal the molecular mechanism and related theories of ABA involved in herbaceous peony seed dormancy release.


2021 ◽  
pp. 110734
Author(s):  
Yuhan Tang ◽  
Wenbo Shi ◽  
Xing Xia ◽  
Daqiu Zhao ◽  
Yanqing Wu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (21) ◽  
pp. 11884
Author(s):  
Yanqing Wu ◽  
Tingting Li ◽  
Zhuoya Cheng ◽  
Daqiu Zhao ◽  
Jun Tao

The MYB transcription factor (TF) is crucial for plant growth, development, and response to abiotic stress, but it is rarely reported in the herbaceous peony (Paeonia lactiflora Pall.). Here, an MYB TF gene was isolated, and based on our prior mRNA data from P. lactiflora samples, it was treated with drought stress (DS). Its complete cDNA structure was 1314 bp, which encoded 291 amino acids (aa). Furthermore, using sequence alignment analysis, we demonstrated that PlMYB108 was an R2R3-MYB TF. We also revealed that PlMYB108 was primarily localized in the nucleus. Its levels rose during DS, and it was positively correlated with drought tolerance (DT) in P. lactiflora. In addition, when PlMYB108 was overexpressed in tobacco plants, the flavonoid content, antioxidant enzyme activities, and photosynthesis were markedly elevated. Hence, the transgenic plants had stronger DT with a higher leaf water content and lower H2O2 accumulation compared to the wild-type (WT) plants. Based on these results, PlMYB108 is a vital gene that serves to increase flavonoid accumulation, reactive oxygen species (ROS), scavenging capacity, and photosynthesis to confer DT. The results would provide a genetic resource for molecular breeding to enhance plant DT.


2021 ◽  
Author(s):  
Xiaotong Ji ◽  
Zhuangzhuang Xu ◽  
Meiling Wang ◽  
Xuyang Zhong ◽  
Lingling Zeng ◽  
...  

AbstractHerbaceous peony is an important cut-flower plant cultivated across the world, but its short vase life substantially restricts the economic value of this crop. It is well established that endogenous hormones regulate the senescing process, but the molecular mechanism of them in flower senescence is still unclear. Here, we isolated a MYB transcription factor gene PlMYB308 from herbaceous peony flowers. Transcript abundance of PlMYB308 was strongly up-regulated in senescing petals. Silencing of PlMYB308 resulted in delayed peony flower senescence, and dramatically increased gibberellin (GA) but reduced ethylene and abscisic acid (ABA) levels in petals. Ectopic overexpression of PlMYB308 in tobacco accelerated flower senescence, and reduced GA but increased ethylene and ABA accumulation. Correspondingly, biosynthetic genes of ethylene, ABA, and GA showed variable expression levels in petals after silencing or overexpression of PlMYB308. A dual-luciferase assay showed that PlMYB308 specifically bound to the PlACO1 promoter. High expression levels of PlMYB308 were accompanied by low petal anthocyanin accumulation in senescing petals. A further bimolecular fluorescence complementation assay revealed an interaction between PlMYB308 and PlbHLH33, which was supposed to inhibit the anthocyanin biosynthesis. Taken together, our results suggest that the PlMYB308-PlACO1 and PlMYB308-PlbHLH33 regulatory checkpoints perhaps positively and negatively operate the production of ethylene and anthocyanin, respectively, and thus contribute to the senescence with impaired pigmentation in herbaceous peony flowers.


2021 ◽  
Vol 22 (16) ◽  
pp. 8382
Author(s):  
Runlong Zhang ◽  
Xiaobin Wang ◽  
Xiaohua Shi ◽  
Lingmei Shao ◽  
Tong Xu ◽  
...  

The introduction of herbaceous peony (Paeonia lactiflora Pall.) in low-latitude areas is of great significance to expand the landscape application of this world-famous ornamental. With the hazards of climate warming, warm winters occurs frequently, which makes many excellent northern herbaceous peony cultivars unable to meet their chilling requirements (CR) and leads to their poor growth and flowering in southern China. Exploring the endodormancy release mechanism of underground buds is crucial for improving low-CR cultivar screening and breeding. A systematic study was conducted on P. lactiflora ‘Meiju’, a screened cultivar with a typical low-CR trait introduced from northern China, at the morphological, physiological and molecular levels. The CR value of ‘Meiju’ was further verified as 677.5 CUs based on the UT model and morphological observation. As a kind of signal transducer, reactive oxygen species (ROS) released a signal to enter dormancy, which led to corresponding changes in carbohydrate and hormone metabolism in buds, thus promoting underground buds to acquire strong cold resistance and enter endodormancy. The expression of important genes related to ABA metabolism, such as NCED3, PP2C, CBF4 and ABF2, reached peaks at the critical stage of endodormancy release (9 January) and then decreased rapidly; the expression of the GA2ox8 gene related to GA synthesis increased significantly in the early stage of endodormancy release and decreased rapidly after the release of ecodormancy (23 January). Cytological observation showed that the period when the sugar and starch contents decreased and the ABA/GA ratio decreased was when ‘Meiju’ bud endodormancy was released. This study reveals the endodormancy regulation mechanism of ‘Meiju’ buds with the low-CR trait, which lays a theoretical foundation for breeding new herbaceous peony cultivars with the low-CR trait.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jia-Song Meng ◽  
Yu-Han Tang ◽  
Jing Sun ◽  
Da-Qiu Zhao ◽  
Ke-Liang Zhang ◽  
...  

Abstract Background Paeonia lactiflora ‘Hangshao’ is widely cultivated in China as a traditional Chinese medicine ‘Radix Paeoniae Alba’. Due to the abundant unsaturated fatty acids in its seed, it can also be regarded as a new oilseed plant. However, the process of the biosynthesis of unsaturated fatty acids in it has remained unknown. Therefore, transcriptome analysis is helpful to better understand the underlying molecular mechanisms. Results Five main fatty acids were detected, including stearic acid, palmitic acid, oleic acid, linoleic acid and α-linolenic acid, and their absolute contents first increased and then decreased during seed development. A total of 150,156 unigenes were obtained by transcriptome sequencing. There were 15,005 unigenes annotated in the seven functional databases, including NR, NT, GO, KOG, KEGG, Swiss-Prot and InterPro. Based on the KEGG database, 1766 unigenes were annotated in the lipid metabolism. There were 4635, 12,304, and 18,291 DEGs in Group I (60 vs 30 DAF), Group II (90 vs 60 DAF) and Group III (90 vs 30 DAF), respectively. A total of 1480 DEGs were detected in the intersection of the three groups. In 14 KEGG pathways of lipid metabolism, 503 DEGs were found, belonging to 111 enzymes. We screened out 123 DEGs involved in fatty acid biosynthesis (39 DEGs), fatty acid elongation (33 DEGs), biosynthesis of unsaturated fatty acid (24 DEGs), TAG assembly (17 DEGs) and lipid storage (10 DEGs). Furthermore, qRT-PCR was used to analyze the expression patterns of 16 genes, including BBCP, BC, MCAT, KASIII, KASII, FATA, FATB, KCR, SAD, FAD2, FAD3, FAD7, GPAT, DGAT, OLE and CLO, most of which showed the highest expression at 45 DAF, except for DGAT, OLE and CLO, which showed the highest expression at 75 DAF. Conclusions We predicted that MCAT, KASIII, FATA, SAD, FAD2, FAD3, DGAT and OLE were the key genes in the unsaturated fatty acid biosynthesis and oil accumulation in herbaceous peony seed. This study provides the first comprehensive genomic resources characterizing herbaceous peony seed gene expression at the transcriptional level. These data lay the foundation for elucidating the molecular mechanisms of fatty acid biosynthesis and oil accumulation for herbaceous peony.


Sign in / Sign up

Export Citation Format

Share Document