chain polyunsaturated fatty acid
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 79)

H-INDEX

56
(FIVE YEARS 6)

BMC Nutrition ◽  
2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Xuan Ren ◽  
Sofus Christian Larsen ◽  
Lotte Lauritzen ◽  
Jeanett Friis Rohde ◽  
Lars Bo Andersen ◽  
...  

Abstract Background The number of children and adolescents with obesity has increased worldwide. Some studies have found an increase in the intake of n-3 long-chain polyunsaturated fatty acid (LCPUFA) to be beneficial for weight and obesity status. The objectives of this study were to examine if intake of trans-fatty acids (TFA) and n-3 LCPUFA at school start was associated with weight and body fat development in the following 3 and 7 years, and if substituting other fats for n-3 LCPUFA in regression models influenced weight and body fat development. Methods A total of 285 children (boys:130, girls:155) were included in this study. Weight, height and skinfold thickness (SF) of children were measured at age 6, 9 and 13 years by trained research personnel. Multivariate linear regression models were used to investigate the associations between n-3 LCPUFA or TFA intake and subsequent changes in body mass index (BMI) or SF. To investigate substitution effects, we constructed regression models including information on n-3 LCPUFA and all other energy given components of the diet, except for the nutrient to be substituted (all other fats and specific subgroups; saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and other polyunsaturated fatty acids (PUFAs)). Results No significant associations were observed between intake of TFA or n-3 LCPUFA and changes in BMI and SF. Also, results from regression analysis showed substituting other fats for n-3 LCPUFA did not associate with BMI or SF development. Conclusion The lack of associations between n-3 LCPUFA and TFA and adiposity suggests that fat composition in the diet does not play a major role in obesity development among school-aged children.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tuo Wang ◽  
Dongneng Jiang ◽  
Hongjuan Shi ◽  
Umar Farouk Mustapha ◽  
Siping Deng ◽  
...  

Despite the significance of n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) in fish oil in promoting the maturation of female broodstocks, the detailed mechanism of the effect on the expression of hepatic reproduction-related genes is still unclear. In this study, transcriptome sequencing was used to analyze the effect of the higher dietary n-3 LC-PUFA level on gene expression in the liver of adult females spotted scat. Two-year-old female spotted scat (average weight, 242.83 ± 50.90 g) were fed with diets containing 8% fish oil (FO) or 8% soybean oil (SO) for 40 days. The fatty acid profile in the serum, liver, and ovary was analyzed, and high proportions of n-3 LC-PUFA were observed in the FO group. The final average fish body weight and gonadosomatic index were similar between the FO and SO groups. The serum vitellogenin (Vtg) and hepatosomatic index (HSI) of the FO group were significantly higher and lower than that of the SO group, respectively. Comparatively, the liver transcriptome analysis showed 497 upregulated and 267 downregulated genes in the FO group. Among them, the expression levels of three estrogen-regulated genes (i.e., Vtga, Vtgb, and Zp4) were significantly higher in the FO than in the SO group. This expression pattern could be related to the upregulation of Hsd17b7 (the key gene for the synthesis of liver steroid hormone) and the downregulation of the Hsp90 (the estrogen receptor chaperone). The expression levels of Foxo1a and Lep, which are involved in the lipid metabolism, decreased significantly in the FO group, which may be related to the lower level of HSI in the FO group. The genes related to liver LC-PUFA absorption and transport, Fabp2 and Mfsd2ab, were significantly upregulated in the FO group, indicating that fish actively adapt to high-fish-oil diets. In brief, high-fish-oil diets can influence the expression of genes related to liver n-3 LC-PUFA metabolism and reproduction, inhibit the accumulation of liver fat, and promote the liver health and gonad development. This study will contribute to clarifying the mechanism of dietary n-3 LC-PUFA on promoting reproductive development in teleost fish.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3395
Author(s):  
Jabulani Nkululeko Ngcobo ◽  
Fhulufhelo Vincent Ramukhithi ◽  
Khathutshelo Agree Nephawe ◽  
Takalani Judas Mpofu ◽  
Tlou Caswell Chokoe ◽  
...  

The demand to conserve indigenous species through the cryo-gene bank is increasing. Spermatozoa remain sensitive to cryopreservation damages especially that of avian species thus limiting the use of reproductive biotechnologies such as artificial insemination in the conservation programs. Long-chain polyunsaturated fatty acid (LCPUFAs), specifically omega n-3, expanded a research interest to improve animal reproductive efficiency through improving spermatozoa quality. This is driven by the fact that mammals cannot synthesize omega-3 de-novo because they lack delta-12 and delta-15 desaturase enzymes thus supplemented in the diet is mandatory. Delta-12 and delta-15 add a double bond at the 12th and 15th carbon-carbon bond from the methyl end of fatty acids, lengthening the chain to 22 carbon molecules. Fish oil is a pioneer source of omega n-3 and n-6 fatty acids. However, there is a report that numerous fisheries are over-exploited and could collapse. Furthermore, processing techniques used for processing by-products could complement alterations of the amino acid profile and reduce protein retrieval. Alternatively, flaxseed oil contains ±52–58% of total fatty acids and lignans in the form of α-linolenic and linoleic acid. Alpha-linolenic acid (ALA,18:3n-3) is enzymatically broken-down de-novo by delta-6 desaturase and lengthened into a long-chain carbon molecule such as eicosapentaenoic acid (C20:5n-3). Nevertheless, controversial findings following the enrichment of diet with flaxseed oil have been reported. Therefore, this paper is aimed to postulate the role of flaxseed oil as an alternative source of omega n-3 and n-6 fatty acids to improve semen quality and quantity from livestock animals. These include the interaction between docosahexaenoic acid (DHA) and spermatogenesis, the interaction between docosahexaenoic acid (DHA) and testicular cells, and the effect of flaxseed oil on semen quality. It additionally assesses the antioxidants to balance the level of PUFAs in the semen.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4243
Author(s):  
Elena Zambrano ◽  
Guadalupe L. Rodríguez-González ◽  
Luis A. Reyes-Castro ◽  
Claudia J. Bautista ◽  
Diana C. Castro-Rodríguez ◽  
...  

We investigated if supplementing obese mothers (MO) with docosahexaenoic acid (DHA) improves milk long-chain polyunsaturated fatty acid (LCPUFA) composition and offspring anxiety behavior. From weaning throughout pregnancy and lactation, female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating and through lactation, half the mothers received 400 mg DHA kg−1 d−1 orally (C+DHA or MO+DHA). Offspring ate C after weaning. Maternal weight, total body fat, milk hormones, and milk nutrient composition were determined. Pups’ milk nutrient intake was evaluated, and behavioral anxiety tests were conducted. MO exhibited increased weight and total fat, and higher milk corticosterone, leptin, linoleic, and arachidonic acid (AA) concentrations, and less DHA content. MO male and female offspring had higher ω-6/ ω-3 milk consumption ratios. In the elevated plus maze, female but not male MO offspring exhibited more anxiety. MO+DHA mothers exhibited lower weight, total fat, milk leptin, and AA concentrations, and enhanced milk DHA. MO+DHA offspring had a lower ω-6/ω-3 milk intake ratio and reduced anxiety vs. MO. DHA content was greater in C+DHA milk vs. C. Supplementing MO mothers with DHA improves milk composition, especially LCPUFA content and ω-6/ω-3 ratio reducing offspring anxiety in a sex-dependent manner.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 912
Author(s):  
Shedrach Benjamin Pewan ◽  
John Roger Otto ◽  
Robert Tumwesigye Kinobe ◽  
Oyelola Abdulwasiu Adegboye ◽  
Aduli Enoch Othniel Malau-Aduli

The aim of this research was to evaluate the nutritional enhancement of omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) composition of edible lamb Longissimus thoracis et lumborum muscle, heart, kidney, and liver in response to dietary supplementation of lot-fed lambs with or without omega-3 oil fortified pellets. The hypothesis tested was that fortifying feedlot pellets with omega-3 oil will enhance the human health beneficial n-3 LC-PUFA composition of edible lamb muscle tissue and organs. Seventy-five Tattykeel Australian White lambs exclusive to the MARGRA brand, with an average body weight of 30 kg at six months of age, were randomly assigned to the following three dietary treatments of 25 lambs each, and lot-fed as a cohort for 47 days in a completely randomized experimental design: (1) Control grain pellets without oil plus hay; (2) Omega-3 oil fortified grain pellets plus hay; and (3) Commercial whole grain pellets plus hay. All lambs had ad libitum access to the basal hay diet and water. Post-slaughter fatty acid composition of the Longissimus thoracis et lumborum muscle, liver, kidney, and heart were determined using thee gas chromatography–mass spectrophotometry technique. Results indicated significant variations (p < 0.05) in fatty acid profiles between tissues and organs. Omega-3 oil fortified pellets significantly (p < 0.05) increased ≥C20 n-3 LC-PUFA (C20:5n-3 eicosapentaenoate, EPA + C22:5n3 docosapentaenoate, DPA + C22:6n3 docosahexanoate DHA); C18:3n-3 alpha-linolenate, ALA; C18:2 conjugated linoleic acid, CLA; total monounsaturated fatty acids, MUFA; polyunsaturated fatty acids, PUFA contents; and reduced the ratio of omega-6 to omega-3 fatty acids in all lamb organs and tissues without impacting shelf-life. The findings demonstrate that the inclusion of omega-3 oil in feedlot diets of lambs enhances the human health beneficial omega-3 long-chain polyunsaturated fatty acid profiles of edible muscle tissue and organs without compromising meat quality.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 515
Author(s):  
E-Ming Rau ◽  
Helga Ertesvåg

Thraustochytrids are unicellular, heterotrophic marine eukaryotes. Some species are known to store surplus carbon as intracellular lipids, and these also contain the long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA). Most vertebrates are unable to synthesize sufficient amounts of DHA, and this fatty acid is essential for, e.g., marine fish, domesticated animals, and humans. Thraustochytrids may also produce other commercially valuable fatty acids and isoprenoids. Due to the great potential of thraustochytrids as producers of DHA and other lipid-related molecules, a need for more knowledge on this group of organisms is needed. This necessitates the ability to do genetic manipulation of the different strains. Thus far, this has been obtained for a few strains, while it has failed for other strains. Here, we systematically review the genetic transformation methods used for different thraustochytrid strains, with the aim of aiding studies on strains not yet successfully transformed. The designs of transformation cassettes are also described and compared. Moreover, the potential problems when trying to establish transformation protocols in new thraustochytrid species/strains are discussed, along with suggestions utilized in other organisms to overcome similar challenges. The approaches discussed in this review could be a starting point when designing protocols for other non-model organisms.


2021 ◽  
Vol 8 ◽  
Author(s):  
Frank E. A. Hayford ◽  
Robin C. Dolman ◽  
Mumin Ozturk ◽  
Arista Nienaber ◽  
Cristian Ricci ◽  
...  

Populations at risk for tuberculosis (TB) may have a low n-3 polyunsaturated fatty acid (PUFA) status. Our research previously showed that post-infection supplementation of n-3 long-chain PUFA (LCPUFA) in TB without TB medication was beneficial in n-3 PUFA sufficient but not in low-status C3HeB/FeJ mice. In this study, we investigated the effect of n-3 LCPUFA adjunct to TB medication in TB mice with a low compared to a sufficient n-3 PUFA status. Mice were conditioned on an n-3 PUFA-deficient (n-3FAD) or n-3 PUFA-sufficient (n-3FAS) diet for 6 weeks before TB infection. Post-infection at 2 weeks, both groups were switched to an n-3 LCPUFA [eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA)] supplemented diet and euthanized at 4- and 14- days post-treatment. Iron and anemia status, bacterial loads, lung pathology, lung cytokines/chemokines, and lung lipid mediators were measured. Following 14 days of treatment, hemoglobin (Hb) was higher in the n-3FAD than the untreated n-3FAS group (p = 0.022), whereas the n-3FAS (drug) treated control and n-3FAS groups were not. Pro-inflammatory lung cytokines; interleukin-6 (IL-6) (p = 0.011), IL-1α (p = 0.039), MCP1 (p = 0.003), MIP1- α (p = 0.043), and RANTES (p = 0.034); were lower, and the anti-inflammatory cytokine IL-4 (p = 0.002) and growth factor GMCSF (p = 0.007) were higher in the n-3FAD compared with the n-3FAS mice after 14 days. These results suggest that n-3 LCPUFA therapy in TB-infected mice, in combination with TB medication, may improve anemia of infection more in low n-3 fatty acid status than sufficient status mice. Furthermore, the low n-3 fatty acid status TB mice supplemented with n-3 LCPUFA showed comparatively lower cytokine-mediated inflammation despite presenting with lower pro-resolving lipid mediators.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chika Horikawa ◽  
Rei Otsuka ◽  
Yukiko Nishita ◽  
Chikako Tange ◽  
Yuki Kato ◽  
...  

Abstract Background There is a growing interest in the significance of adopting a variety of lifestyle habits for maintaining cognitive function among older adults. A lifestyle that is easy to modify, simple, and less burdensome for older people is ideal. We investigated the longitudinal association between global cognitive decline and cognitive leisure activities (CLAs) combined with long-chain polyunsaturated fatty acids (LCPUFAs) intake. Methods The National Institute for Longevity Sciences-Longitudinal Study of Aging (NILS-LSA) enrolled community-dwelling middle-aged and older men and women who were randomly selected from Obu-City and Higashiura Town, Aichi, Japan. Baseline data (2006–2008), including CLAs and dietary intake, were obtained from 517 participants (aged 60–84 years) with normal cognition. Global cognitive decline, defined as the Mini-Mental State Examination (MMSE) score ≤ 27, was assessed at baseline and four years later. Interaction between CLAs and LCPUFAs on cognitive decline was investigated using a multiple logistic analysis with adjustment for confounders. CLA engagement and LCPUFA intake were divided into high and low groups according to the frequency at which each participant engaged in the activity and the median intake level according to sex, respectively. Results A significant interaction was detected for the combination of CLA engagement and LCPUFA intake. Logistic regression coefficients revealed significant interactions when participants engaged in more than five CLA varieties. One of the CLAs, art appreciation, produced a significant main effect against cognitive decline and a significant interaction in combination with LCPUFA intake. The major LCPUFAs—docosahexaenoic acid and arachidonic acid—also exhibited a significant interaction. The combination of high LCPUFA intake and high art appreciation frequency yielded a lower adjusted odds ratio for cognitive decline than the combination of low LCPUFA and low art appreciation [0.25 (95 % confidence intervals, 0.11–0.56)]. Conclusions Preserving cognitive function might be associated with a combination of varied and high-frequency engagement in CLAs combined with high LCPUFA intake.


Sign in / Sign up

Export Citation Format

Share Document