scholarly journals A Nuclear Localization Signal Is Essential for Stress-induced Dimer-to-Trimer Transition of Heat Shock Transcription Factor 3

2000 ◽  
Vol 275 (44) ◽  
pp. 34665-34671 ◽  
Author(s):  
Akira Nakai ◽  
Terumi Ishikawa
FEBS Letters ◽  
1999 ◽  
Vol 461 (3) ◽  
pp. 229-234 ◽  
Author(s):  
Tilo Moede ◽  
Barbara Leibiger ◽  
Hamedeh Ghanaat Pour ◽  
Per-Olof Berggren ◽  
Ingo B Leibiger

1993 ◽  
Vol 105 (2) ◽  
pp. 389-395
Author(s):  
X. Li ◽  
L.D. Etkin

Xenopus nuclear factor 7 (xnf7) is a nuclear phosphoprotein that is encoded by a member of a novel zinc finger gene family and likely functions as a transcription factor. It possesses a nuclear localization signal (NLS) similar to the bipartite basic NLS of nucleoplasmin, but unlike nucleoplasmin, which re-enters nuclei immediately after fertilization, xnf7 remains cytoplasmic until the mid-blastula transition (MBT). We have measured the accumulation of injected labeled xnf7 protein or protein produced from synthetic xnf7 transcripts in the oocyte nuclei (GV). The data show that the NLS of xnf7 functions efficiently in oocytes. Mutations in either of the bipartite basic domains of the xnf7 NLS inhibit nuclear accumulation, while mutations in the spacer sequences have no effect. The xnf7 NLS linked to pyruvate kinase directs the efficient accumulation of this protein into nuclei of early embryos prior to the MBT. These data suggest that retention of the xnf7 protein during development is the result of a mechanism that interferes with the xnf7 NLS function.


2020 ◽  
Vol 58 (6) ◽  
pp. 675-679
Author(s):  
Juri Kim ◽  
Mee Young Shin ◽  
Soon-Jung Park

MYB2 protein was identified as a transcription factor that showed encystation-induced expression in <i>Giardia lamblia</i>. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of <i>G. lamblia</i> MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of <i>G. lamblia</i> glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507–#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLS<sub>GlMYB2</sub>. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLS<sub>GlMYB2</sub> and <i>G. lamblia</i> glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in <i>G. lamblia.</i>


2015 ◽  
Vol 14 (9) ◽  
pp. 1808-1815 ◽  
Author(s):  
Wen-wu ZHANG ◽  
Li-na KONG ◽  
De-xiang ZHANG ◽  
Cong-liang JI ◽  
Xi-quan ZHANG ◽  
...  

2000 ◽  
Vol 275 (20) ◽  
pp. 15578-15585 ◽  
Author(s):  
Jun Tanikawa ◽  
Emi Ichikawa-Iwata ◽  
Chie Kanei-Ishii ◽  
Akira Nakai ◽  
Shu-ichi Matsuzawa ◽  
...  

2003 ◽  
Vol 12 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Frank J Kaiser ◽  
Paola Brega ◽  
Michael L Raff ◽  
Peter H Byers ◽  
Sabina Gallati ◽  
...  

1996 ◽  
Vol 109 (10) ◽  
pp. 2443-2452 ◽  
Author(s):  
S. de la Luna ◽  
M.J. Burden ◽  
C.W. Lee ◽  
N.B. La Thangue

The cellular transcription factor E2F plays a critical role in integrating cell cycle progression with the transcription apparatus by virtue of a physical interaction and control by key regulators of the cell cycle, such as pRb, cyclins and cyclin-dependent kinases. Generic E2F DNA binding activity arises when a member of two families of proteins, E2F and DP, form heterodimeric complexes, an interaction which results in co-operative transcriptional and DNA binding activity. Here, we characterise a new and hitherto unexpected mechanism of control influencing the activity of E2F which is mediated at the level of intracellular location through a dependence on heterodimer formation for nuclear translocation. Nuclear accumulation is dramatically influenced by two distinct processes: alternative splicing of a nuclear localization signal and subunit composition of the E2F heterodimer. These data define a new level of control in the E2F transcription factor whereby interplay between subunits dictates the levels of nuclear DNA binding activity.


Sign in / Sign up

Export Citation Format

Share Document