scholarly journals Translational Regulation of Gene Expression by an Anaerobically Induced Small Non-coding RNA in Escherichia coli

2010 ◽  
Vol 285 (14) ◽  
pp. 10690-10702 ◽  
Author(s):  
Anders Boysen ◽  
Jakob Møller-Jensen ◽  
Birgitte Kallipolitis ◽  
Poul Valentin-Hansen ◽  
Martin Overgaard
2015 ◽  
Vol 71 (a1) ◽  
pp. s29-s30
Author(s):  
Udo Heinemann ◽  
Yasuhiro Murakawa ◽  
Markus Landthaler ◽  
Florian Mayr ◽  
Anja Schütz

2012 ◽  
Vol 416 (3) ◽  
pp. 389-399 ◽  
Author(s):  
Olga Pavlova ◽  
Daria Lavysh ◽  
Evgeny Klimuk ◽  
Marko Djordjevic ◽  
Dmitry A. Ravcheev ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1475
Author(s):  
Veronica Ruta ◽  
Vittoria Pagliarini ◽  
Claudio Sette

Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.


2003 ◽  
Vol 185 (18) ◽  
pp. 5611-5626 ◽  
Author(s):  
Eric Soupene ◽  
Wally C. van Heeswijk ◽  
Jacqueline Plumbridge ◽  
Valley Stewart ◽  
Daniel Bertenthal ◽  
...  

ABSTRACT Escherichia coli strain MG1655 was chosen for sequencing because the few mutations it carries (ilvG rfb-50 rph-1) were considered innocuous. However, it has a number of growth defects. Internal pyrimidine starvation due to polarity of the rph-1 allele on pyrE was problematic in continuous culture. Moreover, the isolate of MG1655 obtained from the E. coli Genetic Stock Center also carries a large deletion around the fnr (fumarate-nitrate respiration) regulatory gene. Although studies on DNA microarrays revealed apparent cross-regulation of gene expression between galactose and lactose metabolism in the Stock Center isolate of MG1655, this was due to the occurrence of mutations that increased lacY expression and suppressed slow growth on galactose. The explanation for apparent cross-regulation between galactose and N-acetylglucosamine metabolism was similar. By contrast, cross-regulation between lactose and maltose metabolism appeared to be due to generation of internal maltosaccharides in lactose-grown cells and may be physiologically significant. Lactose is of restricted distribution: it is normally found together with maltosaccharides, which are starch degradation products, in the mammalian intestine. Strains designated MG1655 and obtained from other sources differed from the Stock Center isolate and each other in several respects. We confirmed that use of other E. coli strains with MG1655-based DNA microarrays works well, and hence these arrays can be used to study any strain of interest. The responses to nitrogen limitation of two urinary tract isolates and an intestinal commensal strain isolated recently from humans were remarkably similar to those of MG1655.


Author(s):  
J. R. Guest ◽  
J. Green ◽  
S. Spiro ◽  
C. Prodromou ◽  
A. D. Sharrocks

Sign in / Sign up

Export Citation Format

Share Document