scholarly journals Localization of the Dantrolene-binding Sequence near the FK506-binding Protein-binding Site in the Three-dimensional Structure of the Ryanodine Receptor

2011 ◽  
Vol 286 (14) ◽  
pp. 12202-12212 ◽  
Author(s):  
Ruiwu Wang ◽  
Xiaowei Zhong ◽  
Xing Meng ◽  
Andrea Koop ◽  
Xixi Tian ◽  
...  
Biochemistry ◽  
1993 ◽  
Vol 32 (3) ◽  
pp. 754-765 ◽  
Author(s):  
Robert P. Meadows ◽  
David G. Nettesheim ◽  
Robert X. Xu ◽  
Edward T. Olejniczak ◽  
Andrew M. Petros ◽  
...  

1974 ◽  
pp. 7-14 ◽  
Author(s):  
E.A. Padlan ◽  
D.M. Segal ◽  
G.H. Cohen ◽  
D.R. Davies ◽  
S. Rudikoff ◽  
...  

1983 ◽  
Vol 96 (5) ◽  
pp. 1400-1413 ◽  
Author(s):  
R Niederman ◽  
P C Amrein ◽  
J Hartwig

Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.


1991 ◽  
Vol 199 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Anke MULLER-FAHRNOW ◽  
Ursula EGNER ◽  
T. Alwyn JONES ◽  
Heinz RUDEL ◽  
Friedrich SPENER ◽  
...  

2001 ◽  
Vol 354 (2) ◽  
pp. 413-422 ◽  
Author(s):  
Geert BULTYNCK ◽  
Patrick DE SMET ◽  
Daniela ROSSI ◽  
Geert CALLEWAERT ◽  
Ludwig MISSIAEN ◽  
...  

We investigated the interaction of the 12kDa FK506-binding protein (FKBP12) with two ryanodine-receptor isoforms (RyR1 and RyR3) and with two myo-inositol 1,4,5-trisphosphate (IP3) receptor isoforms (IP3R1 and IP3R3). Using glutathione S-transferase (GST)-FKBP12 affinity chromatography, we could efficiently extract RyR1 (42±7% of the solubilized RyR1) from terminal cisternae of skeletal muscle as well as RyR3 (32±4% of the solubilized RyR3) from RyR3-overexpressing HEK-293 cells. These interactions were completely abolished by FK506 (20µM) but were largely unaffected by RyR-channel modulators. In contrast, neither IP3R1 nor IP3R3 from various sources, including rabbit cerebellum, A7r5 smooth-muscle cells and IP3R-overexpressing Sf9 insect cells from Spodoptera frugiperda, were retained on the GST-FKBP12 matrix. Moreover, immunoprecipitation experiments indicated a high-affinity interaction of FKBP12 with RyR1 but not with IP3R1. In order to determine the FKBP12-binding site, we fragmented both RyR1 and IP3R1 by limited proteolysis. We obtained a 45kDa fragment of RyR1 that bound to the GST-FKBP12 matrix, indicating that it retained all requirements for FKBP12 binding. This fragment was identified by its interaction with antibody m34C and must therefore contain its epitope (amino acids 2756–2803). However, no fragment of IP3R1 was retained on the column. These molecular data are in agreement with the lack of correlation between FKBP12 and IP3R1 expression in various cell types. The observation that FKBP12 did not affect IP3-induced Ca2+ release but reduced caffeine-induced Ca2+ release also indicated that mature IP3R1 and IP3R3, in contrast to RyR1 and RyR3, did not display a specific, high-affinity interaction with FKBP12.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4396 ◽  
Author(s):  
Dickson Kinyanyi ◽  
George Obiero ◽  
George F.O. Obiero ◽  
Peris Amwayi ◽  
Stephen Mwaniki ◽  
...  

African swine fever virus (ASFV) is the etiological agent of ASF, a fatal hemorrhagic fever that affects domestic pigs. There is currently no vaccine against ASFV, making it a significant threat to the pork industry. The ASFV genome sequence has been published; however, about half of ASFV open reading frames have not been characterized in terms of their structure and function despite being essential for our understanding of ASFV pathogenicity. The present study reports the three-dimensional structure and function of uncharacterized protein, pB263R (NP_042780.1), an open reading frame found in all ASFV strains. Sequence-based profiling and hidden Markov model search methods were used to identify remote pB263R homologs. Iterative Threading ASSEmbly Refinement (I-TASSER) was used to model the three-dimensional structure of pB263R. The posterior probability of fold family assignment was calculated using TM-fold, and biological function was assigned using TM-site, RaptorXBinding, Gene Ontology, and TM-align. Our results suggests that pB263R has the features of a TATA-binding protein and is thus likely to be involved in viral gene transcription.


Sign in / Sign up

Export Citation Format

Share Document