scholarly journals Wingless-type Mammary Tumor Virus Integration Site Family, Member 5A (Wnt5a) Regulates Human Immunodeficiency Virus Type 1 (HIV-1) Envelope Glycoprotein 120 (gp120)-induced Expression of Pro-Inflammatory Cytokines via the Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and c-Jun N-terminal Kinase (JNK) Signaling Pathways

2013 ◽  
Vol 288 (19) ◽  
pp. 13610-13619 ◽  
Author(s):  
Bei Li ◽  
Yuqiang Shi ◽  
Jianhong Shu ◽  
Junling Gao ◽  
Ping Wu ◽  
...  
mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Gurvani B. Singh ◽  
Hyewon Byun ◽  
Almas F. Ali ◽  
Frank Medina ◽  
Dennis Wylie ◽  
...  

ABSTRACT Complex human-pathogenic retroviruses cause high morbidity and mortality worldwide, but resist antiviral drugs and vaccine development due to evasion of the immune response. A complex retrovirus, mouse mammary tumor virus (MMTV), requires replication in B and T lymphocytes for mammary gland transmission and is antagonized by the innate immune restriction factor murine Apobec3 (mA3). To determine whether the regulatory/accessory protein Rem affects innate responses to MMTV, a splice-donor mutant (MMTV-SD) lacking Rem expression was injected into BALB/c mice. Mammary tumors induced by MMTV-SD had a lower proviral load, lower incidence, and longer latency than mammary tumors induced by wild-type MMTV (MMTV-WT). MMTV-SD proviruses had many G-to-A mutations on the proviral plus strand, but also C-to-T transitions within WRC motifs. Similarly, a lymphomagenic MMTV variant lacking Rem expression showed decreased proviral loads and increased WRC motif mutations relative to those in wild-type-virus-induced tumors, consistent with activation-induced cytidine deaminase (AID) mutagenesis in lymphoid cells. These mutations are typical of the Apobec family member AID, a B-cell-specific mutagenic protein involved in antibody variable region hypermutation. In contrast, mutations in WRC motifs and proviral loads were similar in MMTV-WT and MMTV-SD proviruses from tumors in AID-insufficient mice. AID was not packaged in MMTV virions. Rem coexpression in transfection experiments led to AID proteasomal degradation. Our data suggest that rem specifies a human-pathogenic immunodeficiency virus type 1 (HIV-1) Vif-like protein that inhibits AID and antagonizes innate immunity during MMTV replication in lymphocytes. IMPORTANCE Complex retroviruses, such as human-pathogenic immunodeficiency virus type 1 (HIV-1), cause many human deaths. These retroviruses produce lifelong infections through viral proteins that interfere with host immunity. The complex retrovirus mouse mammary tumor virus (MMTV) allows for studies of host-pathogen interactions not possible in humans. A mutation preventing expression of the MMTV Rem protein in two different MMTV strains decreased proviral loads in tumors and increased viral genome mutations typical of an evolutionarily ancient enzyme, AID. Although the presence of AID generally improves antibody-based immunity, it may contribute to human cancer progression. We observed that coexpression of MMTV Rem and AID led to AID destruction. Our results suggest that Rem is the first known protein inhibitor of AID and that further experiments could lead to new disease treatments.


2006 ◽  
Vol 80 (22) ◽  
pp. 11313-11321 ◽  
Author(s):  
Sanggu Kim ◽  
Yein Kim ◽  
Teresa Liang ◽  
Janet S. Sinsheimer ◽  
Samson A. Chow

ABSTRACT Integration of retroviral DNA is nonspecific and can occur at many sites throughout chromosomes. However, the process is not uniformly distributed, and both hot and cold spots for integration exist. The mechanism that determines target site specificity is not well understood. Because of the nonspecific and widespread nature of integration, studies analyzing the mechanism and factors that control target site selection require the collection and analysis of a large library of human immunodeficiency virus type 1 (HIV-1) proviral clones. Such analyses are time-consuming and labor-intensive using conventional means. We have developed an efficient and high-throughput method of sequencing and mapping a large number of independent integration sites in the absence of any selection or bias. The new assay involves the use of a modified HIV-1 (NL-Mme) containing a type IIS restriction site, MmeI, at the right end of viral DNA. Digestion of genomic DNA from NL-Mme-infected cells generated viral DNA-containing fragments of a discrete size. Subsequent ligation-mediated PCR yielded short integration site fragments termed Int-tags, which were concatemerized for determining multiple integration sites in a single sequencing reaction. Analysis of chromosomal features and sequence preference associated with integration events confirmed the validity of the new high-throughput assay. The assay will aid the effort in understanding the mechanisms of target site selection during HIV-1 DNA integration, and the described methodology can be adapted easily to integration site studies involving other retroviruses and transposons.


2004 ◽  
Vol 75 (5) ◽  
pp. 832-843 ◽  
Author(s):  
Akio Kanazawa ◽  
Syuuichi Tsukada ◽  
Akihiro Sekine ◽  
Tatsuhiko Tsunoda ◽  
Atsushi Takahashi ◽  
...  

1999 ◽  
Vol 19 (6) ◽  
pp. 4065-4078 ◽  
Author(s):  
Ward Giffin ◽  
Wenrong Gong ◽  
Caroline Schild-Poulter ◽  
Robert J. G. Haché

ABSTRACT Mouse mammary tumor virus (MMTV) transcription is repressed by DNA-dependent protein kinase (DNA-PK) through a DNA sequence element, NRE1, in the viral long terminal repeat that is a sequence-specific DNA binding site for the Ku antigen subunit of the kinase. While Ku is an essential component of the active kinase, how the catalytic subunit of DNA-PK (DNA-PKcs) is regulated through its association with Ku is only beginning to be understood. We report that activation of DNA-PKcs and the repression of MMTV transcription from NRE1 are dependent upon Ku conformation, the manipulation of DNA structure by Ku, and the contact of Ku80 with DNA. Truncation of one copy of the overlapping direct repeat that comprises NRE1 abrogated the repression of MMTV transcription by Ku–DNA-PKcs. Remarkably, the truncated element was recognized by Ku–DNA-PKcs with affinity similar to that of the full-length element but was unable to promote the activation of DNA-PKcs. Analysis of Ku–DNA-PKcs interactions with DNA ends, double- and single-stranded forms of NRE1, and the truncated NRE1 element revealed striking differences in Ku conformation that differentially affected the recruitment of DNA-PKcs and the activation of kinase activity.


2005 ◽  
Vol 79 (19) ◽  
pp. 12199-12204 ◽  
Author(s):  
Bruce Crise ◽  
Yuan Li ◽  
Chiuchin Yuan ◽  
David R. Morcock ◽  
Denise Whitby ◽  
...  

ABSTRACT Simian immunodeficiency virus (SIV) is a useful model for studying human immunodeficiency virus (HIV) pathogenesis and vaccine efficacy. As with all other retroviruses, integration is a necessary step in the replication cycle of SIV. The location of the retrovirus integration site is known to impact on viral gene expression, establishment of viral latency, and other aspects of the replication cycle of a retrovirus. In this study, 148 SIV provirus integration sites were sequenced and mapped in the human genome. Our analysis showed that SIV integration, like that of HIV type 1 (HIV-1), exhibited a strong preference for actively transcribed regions in the genome (A. R. Schroder et al., Cell 110:521-529, 2002) and no preference for the CpG islands or transcription start sites, in contrast to observations for murine leukemia virus (X. Wu et al., Science 300:1749-1751, 2003). The parallel integration target site preferences of SIV and HIV-1 suggest that these lentiviruses may share similar mechanisms for target site selection and that SIV serves as an accurate model of HIV-1 with respect to integration.


Sign in / Sign up

Export Citation Format

Share Document