scholarly journals Activation of HIV-1 expression and replication by cGMP dependent protein kinase type 1-β (PKG1β)

Retrovirology ◽  
2007 ◽  
Vol 4 (1) ◽  
pp. 91 ◽  
Author(s):  
Jia Lee ◽  
Venkat RK Yedavalli ◽  
Kuan-Teh Jeang
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
NUPUR DEY ◽  
Jennifer L Busch ◽  
Sharron H Francis ◽  
Jackie D Corbin ◽  
Thomas M Lincoln

Type 1 cGMP-dependent protein kinase (PKG-I) is a widely expressed serine/threonine protein kinase, and is a major mediator of nitric oxide (NO) signaling in vascular smooth muscle cells (VSMC). PKG-I level is highly variable in VSMC and several studies have shown that atherogenic inflammatory cytokines lower the steady-statel levels of PKG-I. The mechanism of action of down-regulation is not well defined, but induction of type II NO synthase (iNOS) and subsequent persistent elevation of cGMP appear to contribute to PKG-I down regulation. In the present study, we examined the role of the ubiquitin/proteasome pathway in PKG-Iα down-regulation in response to elevated cGMP. Incubation of cultured VSMC with 8-Br-cGMP for 6–12 hr lowered PKG-I expression as assessed by western blotting. To further examine the mechanism, Cos7 cells, which do not express PKG-I mRNA or protein, were transfected with PKG-Iα/pcDNA vector and incubated with 8-Br-cGMP. 8-Br-cGMP suppressed PKG-Iα protein level in Cos7 cells (half-maximal concentration = 250 μM). Pretreatment of these cells with the proteasome inhibitor, MG132, followed by 8-Br-cGMP treatment prevented the decline suggesting the involvement of the ubiquitin/26S proteasome pathway. Immunoprecipitation of PKG-I followed by immunoblotting with anti-ubiquitin revealed multiple ubiquitinated PKG bands in the 8-Br-cGMP treated samples but not in untreated samples. Ubiquitination and down-regulation were also inhibited by the specific PKG-I catalytic inhibitor DT-2, suggesting the possible involvement of PKG autophosphorylation in the 8-Br-cGMP induced down-regulation. Mutation of the PKG-Iα autophosphorylation sites to alanines was performed to identify the phosphorylated site responsible for cGMP-dependent ubiquitination. In contrast to wild type PKG-Iα, PKG-Iα S64A, but not the S50A mutant, was not down-regulated by 8-Br-cGMP suggesting that autophosphorylation of serine-64 is required for the ubiquitination and down-regulation of PKG-I. Autophosphorylation and cGMP-mediated down-regulation of PKG-I may be an important mechanism to control excess cGMP signaling in VSMC.


Hypertension ◽  
1996 ◽  
Vol 27 (3) ◽  
pp. 552-557 ◽  
Author(s):  
Naohisa Tamura ◽  
Hiroshi Itoh ◽  
Yoshihiro Ogawa ◽  
Osamu Nakagawa ◽  
Masaki Harada ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 52
Author(s):  
Mirja Koch ◽  
Constanze Scheel ◽  
Hongwei Ma ◽  
Fan Yang ◽  
Michael Stadlmeier ◽  
...  

Mutations in the CNGA3 gene, which encodes the A subunit of the cyclic guanosine monophosphate (cGMP)-gated cation channel in cone photoreceptor outer segments, cause total colour blindness, also referred to as achromatopsia. Cones lacking this channel protein are non-functional, accumulate high levels of the second messenger cGMP and degenerate over time after induction of ER stress. The cell death mechanisms that lead to loss of affected cones are only partially understood. Here, we explored the disease mechanisms in the Cnga3 knockout (KO) mouse model of achromatopsia. We found that another important effector of cGMP, the cGMP-dependent protein kinase 2 (Prkg2) is crucially involved in cGMP cytotoxicity of cones in Cnga3 KO mice. Virus-mediated knockdown or genetic ablation of Prkg2 in Cnga3 KO mice counteracted degeneration and preserved the number of cones. Analysis of markers of endoplasmic reticulum stress and unfolded protein response confirmed that induction of these processes in Cnga3 KO cones also depends on Prkg2. In conclusion, we identified Prkg2 as a novel key mediator of cone photoreceptor degeneration in achromatopsia. Our data suggest that this cGMP mediator could be a novel pharmacological target for future neuroprotective therapies.


Sign in / Sign up

Export Citation Format

Share Document